

Evaluation of Peer-to-Peer Database Solutions

By: W Anthony Young
 20161423
Date: July 30th, 2004
For: Prof. T. Ozsu
Subject: CS 654 - Spring 2004

Young, 2

1) Introduction

 Database systems have been in use for decades as a means to store information.

Large organizations store employee, customer and product information. Healthcare

professionals store patient information. Researchers keep data on research projects. No

matter where they are used, databases have the power to organize our information and

help us access it efficiently.

 Distributed databases have also been in use for many years. They allow for local

autonomy, improved query performance, a high level of expandability, improved

reliability, easy data sharing, and improved availability of access [14]. Distributed

databases provide an organization the flexibility to tune storage and access protocols to

suit their infrastructure. For example, data that is frequently used can be replicated to

reduce response time. As well, data can be spread across many servers to increase

redundancy.

 Recently, peer-to-peer architecture has been applied to database systems. This

architecture allows a system to act as both a client for performing queries and interacting

with the user, and as a server to provide results to queries posed by other clients on the

network [13].

 1.1) Fundamental Differences

 Peer-to-peer databases are fundamentally different from distributed and traditional

databases in several ways. One of these fundamental differences is that nodes may join

and leave a peer-to-peer network at any time. In distributed and traditional databases,

nodes (peers) are added out of necessity (i.e. for redundancy or growth) and are known to

Young, 3

the cluster ahead of time [12]. However, a peer may join an information-sharing network

at any time, and should only have its resources added to the resource pool when it comes

online. Also, peer nodes are not necessarily known ahead of time (except in special cases

of security restricted networks). This “arbitrary join” paradigm for peer systems poses

challenges to finding data with queries, providing complete data through queries, and

locating peers on a network. Take the following query as an example:

 SELECT Min(Price)
 FROM Products
 WHERE ProductName = ‘Apple PowerMac G5 Dual 2GHz’

With this query, the user is looking for the lowest price for a product. If peer node n1

contains a cheaper product than peer node n2, and n1 is unavailable, the user will receive

an incorrect result from their query. Also, how does the node performing the query know

to which IP addresses the SQL statement should be sent in order to reach other peers?

 A second fundamental difference between peer-to-peer databases and distributed

and traditional databases is that the schema for a peer-to-peer database is not global. In

traditional and distributed databases, the schema is standardized across each node. In a

peer-to-peer database network, several schemas may be used to represent the same type

of data at different nodes [12]. For example, imagine a peer network with two nodes each

containing a database of contact information. Node n3 may store contact information in a

schema such as the following:

 TABLE: Contacts {
 LName VARCHAR 25;
 FName VARCHAR 25;
 Phone INT;
 Email VARCHAR 50;
 Address VARCHAR 100;
 }

Young, 4

Also, node n4 may store contact information in a schema such as the following:

 TABLE: contact_info {
 Lastname TEXT 15;
 Firstname TEXT 15;
 Phonenumber TEXT 10;
 Emailaddress TEXT 40;
 Homeaddress TEXT 50;
 }

This “arbitrary schema” paradigm for peer systems poses problems for query

completeness. For example, n3 might be searching for contact information and receive a

false negative when querying n4 with a statement such as:

 SELECT *
 FROM Contacts
 WHERE FName = ‘John’ AND LName = ‘Doe’

In this case, n4 might actually contain a record for John Doe. But, because records are

stored in a different schema, the query will not return it.

 A third fundamental difference is that the set of available data in a peer-to-peer

network might not be complete. Distributed and traditional databases contain a complete

set of data in each server cluster. However, a cluster of peers might not have the complete

set of data required to accurately and completely answer a query [12]. This is because a

node containing some information required by a query might be offline. Obviously, this

query will not be able to return proper and complete results because of missing

information. This “missing data” paradigm for peer systems poses problems for query

completeness and correctness. The former, completeness, is obvious. If data is offline it

will not be found and a complete result set will not be returned. The latter, correctness, is

somewhat more difficult to understand. An incorrect result would be attributed to

incomplete data providing a false result to a query. For example, take the SQL statement:

Young, 5

 SELECT Count(DISTINCT Address)
 FROM Customer

If a peer containing part of the Customer table is offline, the user will not receive the

correct number of distinct addresses.

 A fourth fundamental difference is that queries in peer-to-peer databases must be

routed to many nodes. In distributed databases, a query can be routed to a relatively small

set of nodes. In peer-to-peer databases, the query must be passed to many nodes in order

to return an accurate result set [12]. This “query routing” paradigm for peer systems

poses problems for locating nodes, routing queries, retrieving results, and doing all this in

an efficient manner (nb: efficiency in this context refers to low consumption of network

resources). For example, a peer system may contain upwards of 10 000 nodes. It is not

feasible for the peer performing the query to store the IP address of each other node in the

network, contact each node individually and submit its query, and wait for results from

all 10 000 nodes before continuing. Such a system would require mass amounts of space

at each node to store IP addresses, consume mass amounts of network bandwidth when

submitting queries and retrieving result sets, and experience a long response time.

 1.2) Applications

 Peer database systems have many different applications. One application of peer

systems is to special interest communities. The internet holds many special interest

groups that share information, have meetings, etc. It would be advantageous for such

groups to have individual communities that could be used to share files, host chats, etc.

[9]. This type of system would distribute information across many nodes and require

some sort of efficient search mechanism to find data. A peer network would be ideally

Young, 6

suited for this purpose: information would not need to be centrally located, and users

would be able to find information spread across multiple nodes with relative ease.

 Finding contact information is another application of peer systems. Frequently,

people do not have a phone number or an email address for a person or business they are

trying to contact. In such instances, a peer database could be queried to retrieve the

required information. Each person could store their own vCard, and the vCards of those

people they have already searched for. Locating contact information would be faster as

users would not have to look through old emails or a hierarchy of web pages in order to

find the information they need. Also, caching would speed up subsequent queries for the

same data.

 A third application of peer systems is development environment configuration

management. When engineers work together to develop a piece of software, they must

adhere to standards in order to ensure that everyone working on the project can follow the

code and documentation. In programming environments, it can be particularly

challenging to ensure that everyone uses the same conventions for variable naming, file

structure, etc [5]. Such information could be stored in a searchable database. Due to the

scale of some projects, it might also be necessary to distribute templates, project

documents, etc. to many different people. Instead of sending this information via email,

and in order to ensure that each person working on the project has the most up-to-date

copy, a query could be performed on a peer database system to allow each employee to

download the information they require.

 Transfer of patient records is another application of peer database systems.

Hospitals and doctor’s offices must share information about patients: their medical

Young, 7

history, contact information, etc. [12]. This sharing usually requires faxing or mailing

large amounts of information. This can sometimes take days to accomplish. If, for

example, a patient has been taken to an emergency room because of complications

resulting from surgery they had at a hospital 1 000 kilometers away, it is imperative that

information take minutes rather than days to arrive. In these instances, it would be ideal

to search hospital and doctor’s office databases remotely to retrieve a patient’s

information.

 Another application of peer systems is storing banking information. Customers

often hold accounts at one single bank branch. Such a branch services the client on a

regular basis, but records are often stored elsewhere on a central server. This results in

the branch needing to connect to the central server every time a transaction needs to be

performed on the client’s account. In this situation, a peer system would speed up access

to the client’s records by distributing them across individual branches. Queries could then

be performed over all branches in order to find account information for a client who goes

to a different branch, an ATM, or another bank.

 Another application of peer systems is distributed file storage. Distributing office

documents across employee computers is usually done as a consequence of work style

rather than as a conscious decision. However, this distribution paradigm is actually quite

efficient for storage. Adding a simple searching mechanism would allow employees to

access files stored on each other’s computers without the need for a large file server, or

for file requests to be made by email, phone, etc. [9]. Of course, security protocols would

be a required addition to such a system.

Young, 8

 Criminology is the final application of peer systems that will be discussed here.

Law enforcement officials around the world keep DNA, fingerprints, criminal records,

etc. in nationwide central databases for easy access; however, this creates a bottleneck at

the server and the server is a single point of failure. As such, it would be advantageous to

distribute this data across multiple nodes. For example, the agency that collected the

evidence or arrested the individual could be responsible for holding records, updating

them as new information is discovered, etc. Using a peer system, officials from around

the world would be able to search this information, and cache it for frequent use and to

speed up searching by other agencies.

 1.3) Strengths

 There are several strengths associated with peer systems. Some of the greatest are:

• No single point of failure: In a traditional or distributed database environment, if

network links or server machines crash, the entire system can be unavailable.

Distributed databases attempt to solve this problem by replicating or partitioning

data. Although replicated server clusters may survive crashes, traditional and

partitioned server crashes will result in a loss of data availability. Peer systems

overcome this problem by keeping data highly distributed using local caching. In

this case, if a peer crashes, queries can still be processed. Also, it is highly

unlikely that enough network links would fail at one time to cause a significant

number of peers to become inaccessible.

• Minimal administration: In a traditional database environment, a database

administrator must keep a watchful eye on server performance and load, and

Young, 9

design queries to be run by users. The level of administration increases to include

replication and partitioning concerns as well as interconnection performance in

distributed database environments. Peer systems do not require high amounts of

overhead. Users create their own databases, store their own information, perform

their own queries, and connect their nodes with the click of a button. Minimal

administration is required at the bootstrap nodes in order to keep registration and

discovery of peers fast and efficient.

• Vast amounts of data: Peer databases provide users with access to a very large

amount of data of many different types. Also, users can search for many different

data types at once. Traditional and distributed database systems often store single

types of information (i.e. information regarding customers and products). Users

must then query many different servers in order to get the information that they

require.

• Replicated data for fast retrieval: In peer systems, data is replicated over many

nodes as queries are performed and results are cached locally. This allows access

to locally cached copies of information if the original node is busy or unavailable.

In traditional, and to a lesser extent distributed, database systems, queries will run

slower as the load on the database server increases. Also, data will not be

obtainable if the server is too busy or is unavailable.

 1.4) Weaknesses

 There are several weaknesses associated with peer systems. Some of greatest are:

Young, 10

• Discovery of peers: In traditional and distributed database systems, all cluster

nodes are known ahead of time. This makes performing queries very easy, as

applications know exactly what server(s) to contact. In peer systems, nodes may

join and leave the cluster at any time. As such, nodes never have a complete

picture of the peer network. It is thus necessary to “discover” other peers on the

network before performing queries.

• Query routing: In peer systems, queries must be routed to all or large subsets of

nodes in order to find peers that have the information a user is interested in.

Implementing efficient routing algorithms that return complete results is difficult.

In traditional and distributed database systems, queries are routed to a single or a

small number of servers for processing. This is because all the required

information is stored in a single or small number of places.

• Consumption of network resources: Because peer systems must route queries to a

large number of nodes, they often consume a large amount of network resources.

This is in sharp contrast to traditional and distributed database systems in which

often only one request and one reply is transmitted.

• Mobility of users: In traditional and distributed database systems, servers are

usually given static IP addresses. Applications and users then contact servers at

those addresses to perform queries. In peer systems, nodes are usually assigned

dynamic IP addresses as they log onto a network. Because of this, mapping tables

must be maintained by bootstrap nodes or neighbours and read before queries can

be routed.

Young, 11

2) Key Issues

 There are several key issues that must be taken into account when designing a

peer database system. This paper will present five of the key issues that need to be

addressed and evaluate different peer systems based on them.

 2.1) Scalability

 Scalability refers to how well a system performs as the amount of load on it

increases. A peer system must be able to handle an ever-increasing community of users

[7]. If a system performs adequately with 1 000 users, it should also perform adequately

with 100 000 users. As the size of the community increases, so does the consumption of

network bandwidth, the number of messages passed between peers, and the amount of

information that a bootstrap node or central server must keep track of. Ideally, a peer

system will be able to scale in a less than linear fashion. Otherwise, an increase in size

has the potential to choke the network a user community runs on top of, and overload the

bootstrap nodes or central server attempting to hold the community together.

 2.2) Availability

 Nodes should be able to communicate with, and receive data from, each other. As

well, data should be replicated at, and retrievable from, several sources [4]. We therefore

define availability in the context of this paper to mean the ability to find and retrieve

resources using a peer system. The importance of availability should be obvious. If a peer

system does not have a way to find or retrieve resources, it does not serve its purpose. In

Young, 12

an ideal system, if user A has a resource and user B caches that resource for later use,

user C should be able to obtain that resource from user A or B.

 2.3) Performance

 The network should return results with the smallest latency possible. As well,

communication between nodes should be as efficient as possible [8]. Efficiency in the

context of this paper refers to a low consumption of bandwidth and as few messages

being passed between nodes as possible. Performance is critical to any peer system

because users of such a system expect to have fast access to resources. Also, the

usefulness of a system often decreases as performance degrades. As such, for a peer

system to remain useful, it must have adequate performance.

 2.4) Data Authenticity

 Data authenticity is concerned with determining whether or not responses to a

query are factual [4]. As such, a node should be able to tell the difference between a

correct and an incorrect query hit. For example, if a user is searching for contact

information for John Doe, how does the user know that the information returned is

correct? Furthermore, if two different sets of information are returned, both purporting to

be for John Doe, how does the user determine which set of information is correct?

Ideally, a peer system would avoid returning incorrect results, or at least provide the user

with a mechanism to aid in determining which information is factual.

 2.5) Security

Young, 13

 A peer system must ensure that authorized users are the only ones who make use

of privileged data [3]. For example, in a system that shares patient records between

doctor’s offices and hospitals, only doctors, nurses, and their respective staff members

should be able to access private information. As well, information should be encrypted

during transport and while in storage to ensure that it cannot be stolen. In the context of

this paper, we define security to mean that only authenticated users with proper privileges

can access privileged system resources.

3) Proposed Peer-to-Peer Database Systems

 Several different peer database systems have been proposed in recent years.

However, very little critical evaluation of such systems has been performed. In this

section, four recently proposed peer database systems are presented and evaluated

according to the five key issues outlined in section two.

 3.1) APPOINT

 APPOINT is an acronym for “Approach for Peer-to-Peer Offloading the

INTernet.” [2] It is a system that seeks to provide access to large amounts of spatial data

in a fast and efficient manner. Users may share or obtain entire spatial data sets over the

internet using the SAND (Spatial And Non-spatial Data) browser. SAND is a java-based

browser that allows a user to visualize different spatial data sets that are obtained from

APPOINT. When users first contact the central APPOINT server, they are asked whether

or not they will share their files, extra disk space, and bandwidth in a peer-to-peer

Young, 14

manner. If so, clients can be called upon by the central server to function as servers to

other peers. If not, clients operate under the client-server paradigm.

 APPOINT is a central server system and functions under a traditional client-

server paradigm when system load is low. Users making requests to the system can

download files directly from the server. The central server keeps track of what data sets a

user has downloaded, as well as whether or not the user is online. When system load

starts to increase, APPOINT defers download requests for data sets to peers in an attempt

to optimize performance. The requesting user then downloads the file from a peer who

has already cached it and the performance of the central APPOINT server remains

acceptable (nb: all queries are routed through the central server regardless of whether

they will be deferred to peers or not).

 Uploading data under APPOINT functions in a manner similar to downloading.

When a peer wishes to share a data set and system load is low, the data set will be

uploaded to the central server and made available for download. If system load is high,

data sets are uploaded to other peers and eventually propagated to the central server when

the server load decreases.

 3.1.1) Scalability

 The central APPOINT server must keep state on all system users. This may not

take a significant amount of space on a per-user basis, but when there are many peers

using the system, the amount of data being tracked may overwhelm the server. In this

case, the amount of information stored will grow proportional to the number of users,

negatively affecting scalability.

Young, 15

 The central APPOINT server hosts all data sets that may be downloaded.

According to F. Brabec, H. Samet, and E. Tanin, authors of “Remote Access to Large

Spatial Databases”, spatial data sets usually take up a large amount of disk space. Also, as

the number of users grows, the number of data sets to be stored could grow in an

exponential manner, negatively affecting scalability.

 3.1.2) Availability

 The use of file caching by peers increases file distribution. As such, peers do not

always have to download from the central server. This increases availability of files and

positively affects availability. However, due to the use of a central server, APPOINT

suffers greatly from the single point of failure problem. Should the central server be

inaccessible for any reason, users will not be able to access any resources on the network.

As such, overall availability of the APPOINT system is poor.

 3.1.3) Performance

 Since the central APPOINT server is used to fulfill queries or route them to nodes

with cached copies of data, a very small number of messages must be transferred between

client and server. In the case that the central server handles the query, the client will only

receive one reply to their one request. In the case that a peer handles the query, the client

should have to send a request and receive a reply from the server as well as from the peer.

Therefore, the greatest number of messages required for a query should be two requests

and two replies. For this reason, APPOINT experiences very good performance due

Young, 16

directly to the low number of messages passed. But, the amount of bandwidth consumed

by transferring the actual query result is quite large. This negatively affects performance.

 3.1.4) Data Authenticity

 Data is uploaded to the central APPOINT server and downloaded by peers. Peers

upload their information by propagating it to the server. Using this scheme, it is possible

for malicious users to upload a falsely named data set, or a data set containing incorrect

data. Further, APPOINT does not have any mechanism for validating the data that is

uploaded or downloaded by peers. This makes authenticating data very difficult. As such,

APPOINT has poor data authenticity characteristics.

 3.1.5) Security

 Since APPOINT does not require any security mechanism (i.e. it is a freeware

system), any user may download any file. For the current free distribution of information

that the system is being used for, this does not pose a problem. However, should

APPOINT be employed on a network with sensitive or private data, it would require

security measures to be built in. As such, in environments that require security,

APPOINT would not be able to deliver.

3.1.6) Overall

 Overall, APPOINT scales well and experiences decent performance. However,

APPOINT requires some work to provide data authenticity and security schemes for its

Young, 17

users. As well, availability suffers greatly from the single point of failure problem. This

problem is by far the single greatest failing of APPOINT.

 3.2) DBGlobe

 DBGlobe is a knowledge management system that forms dynamic information

“communities” of nodes (also called “Primary Mobile Objects” or PMOs) that store

information of a common type [1]. Information at a PMO is represented as a service.

Thus, PMOs may publish several services of information to the bootstrap servers so that

user agents may retrieve and use them. PMOs may also cache services that they make use

of in order to publish them for others. Conceptually, each node in the DBGlobe network

contains a data store (PMO) that stores and provides access to information, and an

application that registers information with the bootstrap node and performs queries.

 DBGlobe makes use of a number of “geographically” distributed Cell

Administration Servers (CAS) (nb: it is unclear from the literature whether geographical

area refers to physical location or network location such as IP address or domain). These

bootstrap servers are responsible for publishing services to PMOs for retrieval and to

other CAS’s to aid in query routing. A CAS also registers and holds metadata for the

PMOs that fall within its assigned geographical area. CAS’s receive and route all queries

from PMOs to appropriate PMOs and CAS’s that should be able to provide meaningful

results. Since the CAS’s store metadata for each PMO, this query routing is easy.

 As mentioned above, DBGlobe tracks information communities. This is done

through the use of Community Administration Servers (CoAS’s). A CoAS keeps track of

each PMO that contains information related to the theme of its assigned community. For

Young, 18

example, a “history community” may be assigned to CoAS2. As well as being tracked by

its geographically defined CAS, a PMO that stores historical information would also be

tracked by CoAS2. When a PMO is looking for information about historical events, its

query can then be routed to CoAS2 to receive faster and more accurate results.

Conceptually, a CoAS is identical to a CAS except that it tracks PMOs in information

communities instead of geographic regions. Communities can be created statically by

users, or dynamically by the CAS’s analysis of commonalities in stored metadata.

 DBGlobe makes use of filters to route queries to the appropriate neighbouring

sites (i.e. PMOs, CAS’s, and CoAS’s) in a network. Each site maintains a “local” filter

that summarizes all the services it provides, as well as a set of “merged” filters that

summarize the services offered by its neighbours. Once a site receives a query (either

from a PMO or from a neighbour), the query can be routed to nodes containing relevant

data for further processing.

 3.2.1) Scalability

 Since PMO’s are distributed amongst CAS’s on the network, the amount of user

load on a CAS can be expected, on average, to increase less than linear to the number of

users of the system. However, in the worst case, all PMOs will be from the same

geographic region, and will thus connect to the same CAS, causing the system to scale

linearly. As such, DBGlobe experiences good scalability of user load on average.

 Similarly to APPOINT, the CAS’s must store metadata about other nodes in the

network, and as such, the space required for metadata storage could grow at an

Young, 19

exponential rate. However, since metadata does not require large amounts of disk space,

scalability of space is still decent.

 3.2.2) Availability

 In DBGlobe, query results are cached at the machine performing the original

query. This allows future queries by other peers to retrieve these cached results,

positively affecting availability. However, peers are required to connect to a

geographically defined CAS. Should this CAS be unreachable for any reason, the system

may be inaccessible to some peers. This negatively affects availability. But, DBGlobe

experiences better availability than APPOINT as there are several CAS servers, each

servicing part of the network. Therefore, DBGlobe does not suffer from the same single

point of failure problem that APPOINT suffers from, and experiences fairly good

availability.

 3.2.3) Performance

 Since the CAS’s handle query routing to appropriate sites, a small number of

messages are passed around the network in order to perform a query. However, since the

number of messages passed depends on the distribution of data relevant to a particular

query, it is possible that O(2(n-1)m) messages will be sent across the network for each

query (where n is the number of PMOs and m is the number of CAS’s and CoAS’s). This

is because each request could, in theory, be routed to each CAS in the system and in turn

forwarded to each PMO. Then, replies would be sent back to the querying PMO.

However, performance should be fairly good on average.

Young, 20

 The amount of bandwidth consumed by DBGlobe should be quite small. When

querying databases, unless objects are transferred as part of a request or reply, only a

small amount of data should be sent, keeping bandwidth low.

 In contrast, DBGlobe experiences many more messages being passed than

APPOINT, but should experience much less bandwidth consumption due to the relatively

small size of query result sets.

 3.2.4) Data Authenticity

 DBGlobe provides no means with which to authenticate information. So, for any

returned query results, users will not know whether the results are factual. However, the

use of CoAS’s does mean that queries can be routed to PMOs that claim to have

information related to a specific subject. But, no attempt is made to verify that the

purporting PMO actually holds that type of information. With this scheme, DBGlobe

does experience better data authenticity than APPOINT. But, as with APPOINT, there is

still the possibility of malicious users providing false results.

 3.2.5) Security

 As with APPOINT, DBGlobe does not provide any authentication or encryption

mechanisms to its users. As such, any user may make use of any piece of information in

the system. This is very poor security, but is still within the bounds of the current use of

the system. As with APPOINT, security measures would need to be added should

DBGlobe be used in a problem domain with sensitive data.

Young, 21

 3.2.6) Overall

 DBGlobe experiences better scalability of load and disk space than APPOINT.

This is mainly due to the distribution of user load amongst several CAS’s as apposed to

one central server. This distribution aids in the high data availability of the DBGlobe

system. There is no single point of query, and thus, there is no single point of failure (i.e.

queries can still be routed if a few of the CAS’s are unavailable). Therefore, data is

available with much greater frequency.

DBGlobe experiences fair performance in number of messages passed during

queries. This is mainly due to the “flooding” method in which queries are performed.

However, it can be expected that in the average case, DBGlobe will consume less

bandwidth than APPOINT, making its performance good.

DBGlobe experiences poor data authenticity, but does gain ground over

APPOINT due to the use of the CoAS’s. This increases the likelihood that returned

results are relevant to the query. However, security of data is minimal and, as with

APPOINT, quite poor.

 3.3) Edutella

 Edutella makes use of a “super peer” organization strategy for connecting peers to

each other [10]. Nodes wishing to join the network are either defined as peers or super

peers. Super peers organize themselves into a hypercube topology with edge degrees

defining a neighbouring super peer as degree 0, 1, etc. Peers then connect, using a

clustering algorithm, to the super peer that will provide them with the best performance.

Young, 22

Thus, peers are organized in a star topology around their super peer, and route all queries

to the super peer.

 Super peers maintain two types of indices: “Super Peer / Peer” (SP/P) and “Super

Peer / Super Peer” (SP/SP). The function of the two types of indices is the same: to hold

metadata about peers connected to the network in order to route queries to only those

neighbours who can provide results. However, the information stored in the two types of

indices is what sets them apart. SP/P indices hold metadata for each peer that is

connected to a specific super peer. Thus, each super peer has a different SP/P index.

Incoming queries are then routed to the peers that have relevant data to contribute to the

query. Data can then be returned to the requesting peer through the connection of super

peers. SP/SP indices hold metadata for each peer cluster. So, each super peer would

report to its neighbours what information its peers hold. Metadata would propagate

around a hypercube similar in fashion to the way routing information propagates in the

distance vector routing algorithm: all SP/SP indices would converge to a steady state over

time. Each super peer would then know where to route a query in order to get it to a peer

that has appropriate results, using other super peers as intermediate routers.

 Peers in the Edutella network route queries to their super peer who in turn

forwards them through the network according to the edge degree system discussed above.

When a query request is routed, the edge degree the message was forwarded on is

included in the message. Then, when a super peer receives a query request, it only routes

it to those relevant super peer neighbours that have a degree higher than the degree from

which the query originated.

Young, 23

 In the Edutella network, peers may be clustered to super peers in three ways:

using “ontology clustering”, “rule-based clustering”, or “query clustering”. With

ontology clustering, peers are assigned to clusters according to the data that they are

“interested” in. For example, all peers that are interested in holding or searching for DNA

data would be clustered into one group. With rule-based clustering, peers are clustered

according to a certain set of rules. For example, peers could be clustered according to

domain, IP prefix, average response time, average throughput, etc. With query clustering,

peers are grouped according to the frequency with which they have performed queries on

certain types of data. For example, the number of times they have searched for a person’s

name, a product price, or a fingerprint. This requires peers to store statistics about the

type of information they search for

 3.3.1) Scalability

 Edutella makes use of the super peer paradigm, which allows peers and super

peers to self-regulate their organization. Load is balanced using one of several clustering

algorithms in order to make sure that no super peer has more peers connected to it than it

can handle. Thus, scalability of peers is good. Further, scalability of peers is better than

that of DBGlobe as a more robust algorithm than simple geographical clustering is used

to distribute peers.

 However, Edutella makes use of two centralized indices that must be stored at the

super peer level. The SP/P indices could grow at an exponential rate as with metadata

storage in DBGlobe and APPOINT. As well, the SP/SP indices could grow quite

Young, 24

exponentially as more and more data is added to each super peer, requiring it to be

propagated around the hypercube.

 3.3.2) Availability

 Similar to DBGlobe and APPOINT, all peers and super peers have the ability to

cache results. As such, data is available to the entire network even if the originating peer

goes offline. Once results are cached, the SP/P and SP/SP indices are updated to reflect

that a peer holds new information.

 As with DBGlobe, super peers are decentralized. This means that there is no

single point of failure in Edutella as there is in APPOINT. Further, since the clustering

algorithm employed by Edutella is more robust than that employed by DBGlobe, if a

super peer goes down, peers may be absorbed into a different cluster and will not have to

wait for their super peer to come back online to use the network. Thus, availability in

Edutella is quite good.

 3.3.3) Performance

 Edutella routes queries according to edge degrees. This means that a query can

effectively be routed to all relevant nodes in the topology using at most N-1 messages

(where N is the number of nodes in the network). This minimizes the request messages

that must be sent. Also, all nodes can be reached after a maximum of log2N message

forwarding steps. This means that super peers can aggregate the results to the query and

return it as one large result to the requesting peer. Thus, at most another N-1 message is

required to return a result to the querying peer. This is an improvement over DBGlobe’s

Young, 25

query flooding strategy. It is still, however, a far cry from APPOINT’s single request and

single reply strategy.

 Bandwidth consumption under Edutella can be expected to be relatively low in

the average case for the same reasons as DBGlobe. The small amount of data to be

returned by a query would mean that only a small amount of bandwidth would be

required. Overall, performance is good.

 3.3.4) Data Authenticity

 As with DBGlobe and APPOINT, Edutella does not provide any means to

authenticate that the data being returned to a peer is valid. In fact, unless the ontology

clustering algorithm is used, Edutella’s authenticity scheme is just as poor as the scheme

employed in APPOINT. If the ontology clustering algorithm is used, Edutella can expect

to see authenticity mechanisms only as strong as DBGlobe, and there is still much room

for improvement.

 3.3.5) Security

 As with DBGlobe and APPOINT, Edutella does not provide any means to secure

data on a network. Edutella’s current implementation aims to support the free distribution

of information, meaning that it does not require security services. However, employing

Edutella on a network requiring security would mean it would not provide a suitable

solution.

 3.3.6) Overall

Young, 26

 Edutella experiences relatively good scale of users, but does experience

exponential growth in the size of its stored indices. Comparatively, Edutella scales better

in users than both DBGlobe and APPOINT, but worse in space than DBGlobe. As well,

Edutella slightly improves data availability over DBGlobe in that a more robust

clustering algorithm means that peers can use the network even if their previously

assigned super peer goes offline.

 Edutella experiences a reduced number of messages transmitted over DBGlobe

due to its edge degree message forwarding. This reduces the number of messages

required to be sent to O(2[n-1]) as opposed to O(2[n-1]m) with DBGlobe. Bandwidth

consumption is comparable to that of DBGlobe.

 Edutella suffers from the same lack of security mechanisms that both APPOINT

and DBGlobe suffer from. As well, without the use of ontology clustering, data

authenticity is reduced to be as poor as with APPOINT. However, with ontology

clustering, data authenticity is as good as DBGlobe.

 3.4) PeerDB

 PeerDB is a robust data management solution that supports data sharing through

agent based communication with other peers [7, 8]. In a PeerDB network, each node has

a DBMS, local and export dictionaries, and an agent. The DBMS is responsible for

storing local data that the user has entered through the user interface. It also stores cached

results of queries that have been performed by the agents. The local dictionary stores

metadata and keyword descriptions for all locally stored data. The export dictionary

stores metadata and keyword descriptions for all shared data, and is searchable by remote

Young, 27

agents. Agents perform both local queries on the local dictionary and remote queries on

peers export dictionaries.

 PeerDB is built on top of the BestPeer architecture [11]. Using BestPeer, peers are

organized into a mesh based upon neighbour assignments from a Location Independent

Global Names Lookup (LIGLO) server. A peer initially contacts the LIGLO server and is

assigned a unique identifier and a set of neighbour peers to communicate directly with.

LIGLO servers store the IP address of the peer, its assigned neighbours, and its unique

ID. In this manner, the server can keep track of peer status. When a user logs in again, the

LIGLO server knows its new IP address and can assign it new neighbours. As well, the

LIGLO server can assign the peer as a neighbour to others. When queries are performed,

peers are able to make remote nodes neighbours if they are found to be providing many

useful query hits. This self-reconfiguration of neighbours allows peers to communicate

faster with those nodes that are providing relevant results to its queries. This reduces

response time for relevant results, and allows the forming of information “meshes”

similar in nature to Edutella and DBGlobe communities.

 When a user creates a database schema in PeerDB, they assign keywords to it to

describe the data they are storing [7, 8]. This schema is then searchable by keyword in

order to avoid the problems associated with the arbitrary schema paradigm discussed

above. In order to perform queries on neighbour export dictionaries, peers make use of

agents. Agents are dispatched to each neighbour of a peer when a query is issued. The

agents will query the remote export dictionary by keyword and return any results to the

user (nb: no data is actually returned at this point, only descriptions/keywords). Each

remote query has a time-to-live counter associated with it. If the counter is not zero when

Young, 28

it reaches a neighbour, the counter is decremented and the agent is cloned and dispatched

to all directly connected peers of the neighbour. Replies to queries are returned directly

by the agent to the calling peer. Replies from the agents are then ranked for the user

according to agent-determined relevance. The user then selects the data they wish to have

returned and the agent fetches the full data set.

 3.4.1) Scalability

 There are several LIGLO servers distributed around a PeerDB network. Peers

may contact any one of these servers in order to register themselves when they start up.

The LIGLO servers must store minimal information about each peer (i.e. its status, IP

address and unique ID), and do not have to store any related metadata. As such, this

system scales well both in users and space. PeerDB scales similar in users and better in

space than APPOINT, DBGlobe and Edutella (nb: LIGLO servers are analogous to super

peers and CAS’s).

 One drawback of using LIGLOs to store information related to a peer is that data

be must replicated across each server. Otherwise, peers would only be able to contact one

LIGLO server each time they log in, and this would cause a single point of failure

problem. However, it is a trivial operation to replicate user information across the servers.

This replication process is not discussed in detail in the literature, but the author of this

paper assumes that some messaging overhead and bandwidth consumption would be

necessary to keep information current across all LIGLOs.

 3.4.2) Availability

Young, 29

 Since PeerDB distributes the LIGLO servers across the network, and peer

registration information is replicated at each site, the system should be available to all

peers even if many of the LIGLO servers become unreachable. This is because the peers

are all capable of contacting any of the servers for registration and gathering neighbours.

As well, cached data can be exported to other querying peers when the originating node is

offline. As such, PeerDB experiences availability similar to DBGlobe and Edutella.

 3.4.3) Performance

 PeerDB makes use of a time-to-live (TTL) counter on all queries. This value

allows remote nodes to further distribute the query request to each of its neighbours, and

so on. This means that a maximum of O(2(nTTL)) messages are passed through the

network for each query (where n is the maximum number of neighbours at any peer in the

network). This is because one request and one reply message is required for each remote

peer, and in the worst case, each peer will have n neighbours. Then, when data is to be

requested and returned for a query, an additional O(2(nTTL)) messages is required. This is

because a user may request all results from each queried neighbour. This number of

messages is significantly larger than Edutella, and a query is not necessarily guaranteed

to reach each peer in the system. Thus, PeerDB experiences fairly poor performance in

number of messages passed.

 PeerDB attempts to limit wasted bandwidth by returning only those relevant result

sets that the user has chosen. This ensures that a minimal amount of bandwidth is used

when transferring data. This may significantly decrease, on average, the amount of

bandwidth consumed by PeerDB over that consumed by Edutella, DBGlobe and

Young, 30

APPOINT. However, the user may still request all data sets be transferred, and this would

provide bandwidth consumption on par with Edutella and DBGlobe in the worst case.

 3.4.4) Data Authenticity

 PeerDB attempts to provide some data authenticity through the use of keyword

searching, ranking, and user data selection. Instead of treating all returned results as

valid, PeerDB presents a list of rankings to allow the user to determine which data is

most likely to be relevant to their query. However, there is still no mechanism built in to

ensure that the data a peer makes available is factual. But, through the use of this ranking

and keyword searching system, much better authenticity mechanisms are in place than all

of Edutella, DBGlobe and APPOINT.

 3.4.5) Security

 PeerDB provides some security for sensitive data by restricting what data may be

searched by remote agents. This is done by restricting remote agent queries to the export

dictionary. As with Edutella, DBGlobe and APPOINT, there is no mechanism to support

searching of sensitive data by authorized users, or data encryption; however, by allowing

only certain information to be exportable, PeerDB is one step closer to providing security

functionality. As such, PeerDB still experiences relatively poor security support, but its

mechanisms are slightly better than the others.

 3.4.6) Overall

Young, 31

 PeerDB’s use of LIGLO servers and lack of indexing and metadata storage at the

server level afford it better scalability than each of Edutella, DBGlobe and APPOINT.

PeerDB experiences availability on par with the others through its use of result caching,

distribution of the LIGLO servers, and redistribution of peers after a failure.

 PeerDB experiences poorer performance in terms of number of messages passed

than the others, but does improve on average case bandwidth consumption by allowing

the user to select which data sets are returned.

 PeerDB’s data authenticity is superior to Edutella, DBGlobe and APPOINT due

to its use of keyword searching and ranking. This helps the user determine which results

are most relevant, and speeds up the process of finding useful data. As well, PeerDB

makes some strides towards offering a secure information sharing environment with the

use of the export dictionary. However, this dictionary does not actually allow

authentication of users and encryption of data: it merely supports user-specified global

access rights to local information.

4) Concluding Remarks

 For the most part, systems that make use of true peer-to-peer technology

experience good scalability, availability and performance. The only exception is

APPOINT, which suffers greatly from the single point of failure problem whether it is

acting under the client-server paradigm or the peer-to-peer paradigm.

 Query routing and clustering algorithms have also come a long way through the

study of file sharing networks. For these areas, Edutella provides the optimal solution in

terms of number of messages sent, and PeerDB provides the optimal solution in terms of

Young, 32

bandwidth consumption. As well, neighbour organization through a number of clustering

algorithms is very useful for adapting Edutella to different problem domains.

 It appears that much work still needs to be done in the area of data authenticity

and data security. None of the four solutions evaluated properly supports either of these

two very important functions. However, PeerDB does come closest.

 In general, the systems discussed each present a viable solution for their intended

problem domain. However, each system has drawbacks that limit its deployment in a

setting outside this domain.

Young, 33

References

1. S. Abiteboul, D. Pfoser, E. Pitoura, G. Samaras, and M. Vazirgiannis. DBGlobe:

A Service-Oriented P2P System for Global Computing. In ACM SIGMOD

Record 32(3), September 2003.

2. F. Brabec, H. Samet, and E. Tanin. Remote Access to Large Spatial Databases. In

Proceedings of the Tenth ACM International Symposium on Advances in

Geographic Information Systems.

3. M. Ciglaric, and T. Vidmar. Management of peer-to-peer systems. In Proceedings

of the Parallel and Distributed Processing Symposium, April 2003.

4. N. Daswani, H. Garcia-Molina, and B. Yang. Open problems in data-sharing

peer-to-peer systems. In 9th International Conference on Database Theory,

January 2003.

5. D. Heimbigner, A. van der Hoek, and A. L. Wolf. A generic, peer-to-peer

repository for distributed configuration management. Proceedings of the 18th

International Conference on Software Engineering, March 1996.

6. W. Hoschek. A Unified Peer-to-Peer Database Protocol. Proceedings of the

International IEEE/ACM Workshop on Grid Computing, November 2002.

7. M. Jovanov. Scalability Issues in Large Peer-to-Peer Networks. Accessed June

19th, 2004 from http://www.ececs.uc.edu/~mjovanov/Research/paper.html.

8. J. Liu, Q. Zhang, X. Zhang, and W. Zhu. Measure: a group-based network

performance measurement service for peer-to-peer applications. In Proceedings of

the Global Telecommunications Conference, 2002.

Young, 34

9. T. Nakata, H. Sunaga, and M. Takemoto. In Proceedings of the Third

International Conference on Peer-to-Peer Computing 2003, September 2003.

10. W. Nejdl, W. Siberski, and M. Sintek. Design Issues and Challenges for RDF-

and Schema-Based Peer-to-Peer Systems. In ACM SIGMOD Record 32(3),

September 2003.

11. W. S. Ng, B. C. Ooi, and K. L. Tan. BestPeer: A Self-Configurable Peer-to-Peer

System. The 18th International Conference on Data Engineering, 2002.

12. W. S. Ng, B. C. Ooi, K. L. Tan, and A.Y. Zhou. PeerDB: A P2P-based system for

Distributed Data Sharing. In Proceedings of the International Conference on Data

Engineering, 2003.

13. B. C. Ooi, Y. Shu, and K. L. Tan. Relational data sharing in peer-based data

management systems. In ACM SIGMOD Record 32(3), September 2003.

14. Özsu, M.T. and Valduriez, P. 1991. Principles of Distributed Database Systems.

Prentice Hall, Englewood Cliffs, NJ.

