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1) Introduction 

 Collision detection is the processing of the bounds of two objects to determine if 

they intersect at any time, t. Due to the complexity of processing 3D shapes inside a 

computer, collision detection is a difficult problem to solve in constant or linear time. 

However, this difficulty does not deter programmers from using collision detection 

algorithms to solve many real world problems. The three major application areas for 

collision detection algorithms are safety, research and entertainment. 

 One application of collision detection to safety is to aid collision avoidance in 

maritime, air and land vehicle navigation [2,4]. These systems must be able to interpolate 

when a collision between two vehicles is likely to take place. Often, transponders can be 

used to represent an object’s position in space. Then, by extrapolation of object 

geometries, position, acceleration and velocity, a system is capable of determining if a 

crash will occur. It can then notify the vehicle navigators of the expected time and 

location of a crash. Navigators can then take measures to correct their course to avoid 

collisions. 

 A second application of collision detection to safety is to automatically notify 

emergency response crews of vehicle collisions. A tracking system would be able to 

notify ambulance and fire crews of the location of an accident when it occurs. The 

tracking system would also be able to report the speed at which vehicles were traveling, 

the angle of impact, etc. This information would be available to emergency crews in real 

time to help save lives. That way, if the people involved in the accident were unable to 

call for help, crews could be dispatched before a passer-by was able to get to a phone. 

 The major application of collision detection to research is through the use of 
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interactive simulation and modeling. When objects are in motion, they may collide. 

Scientists often want to study the effects of these collisions on the objects involved in 

order to determine how they behave before, during and after collisions occur. To make 

this study possible, an algorithm must be able to precisely detect when and where 

collisions would take place. That way, more accurate models may be built and more 

accurate simulation results may be obtained. 

 One application of collision detection to entertainment is through graphics 

rendering for game engines. When a user is playing a game, they expect the characters 

and objects to behave as though they were in the real world. For this to happen, objects 

must be able to detect when they collide with each other. As such, collision detection 

algorithms are often a necessity in computer gaming. 

 A second application of collision detection to entertainment is to scene animation 

[7]. When companies such as Dreamworks are creating a movie, they want character and 

object movements within a scene to appear real. As such, animation software must be 

able to detect when objects collide with each other in order to make, for example, a ball 

bounding off a wall appear realistic. Animation relies quite heavily on collision detection 

to properly model clothing, objects falling or breaking, etc. As with computer games, 

viewers expect realistic things to happen in response to some collision, and this requires 

accurate collision detection. 

 Although the three main application areas of collision detection are very different, 

they are all areas that are very important to our current value system. North Americans 

quite highly value safety, entertainment, and research (the foundation of science and 

technology). As such, all three areas of application are very important. The main reason 
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for advancement in the development of collision detection algorithms is a longing for 

better realism. 

 

2) Collision Detection Algorithms 

 Now that some introduction has been given to the motivation for accurate 

collision detection, some collision detection algorithms will be presented and evaluated. 

This paper will discuss four different algorithms: bounding box, bounding sphere, binary 

space partitioning tree, and space-time bounds (Hubbard). 

 

 2.1) The Bounding Box Algorithm 

 One method of collision detection makes use of bounding boxes. An object’s 

bounding box is simply a cube of minimal volume that encloses the entire object [6]. This 

cube is fairly simple to build as the maximum and minimum coordinates of an object can 

be obtained and used in the cube’s construction. Then, intersections between bounding 

boxes of various objects in the scene can be tested using simple algebra. If the two are 

found to intersect, a collision is reported. 

 The intersection testing mechanism for two bounding boxes is quite simple. Each 

bounding box has six faces. In order for two boxes to intersect, at least one of the faces of 

each box must intersect. Therefore, simple algebra can be employed to tell if any of the 

36 combinations of two object’s faces intersect. 
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Figure 1: Example Bounding Boxes 

 Figure 1 depicts two possible bounding boxes for objects in 3D space. The shaded 

area is the area of collision between the two. In this example, a collision would be 

reported because two faces of the cubes cross. However, it is clear from figure 1 that the 

two objects do not actually intersect. Although this algorithm is not very accurate, it does 

have practical uses. For example, this algorithm could be used in a situation where 

objects are approximately square, or where quick collision detection is required and 

accuracy is not. 

 The space complexity of the bounding box algorithm is quite good. This is 

because bounding boxes must only store 8 3D points representing the coordinates of the 

cube faces. Thus, space complexity for bounding boxes is O(8) and Ω(8). The time 

complexity of this algorithm is, in contrast, quite poor. This is because each face of each 

object must be tested against each face of each other object. For this reason, the bounding 

box algorithm experiences a time complexity of O((6n)2) = O(n2) (where n is the number 

of objects in the scene). 

 The bounding box algorithm provides very coarse collision detection due to the 

highly conservative representation of each object as a cube. As well, the algorithm 
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executes very slowly when there are many objects in the scene. This is because it must 

test face intersections between all possible combinations of faces. However, bounding 

box collision detection is very easy to implement, and does not require large amounts of 

memory to store geometry and other information. Thus, when collision detection is 

required with very little overhead, the bounding box algorithm is a possible solution. 

 

 2.2) The Bounding Sphere Algorithm 

 Bounding spheres can be used for collision detection in a manner similar to 

bounding boxes [3]. Collision detection is in fact easier to perform with a bounding 

sphere as opposed to a bounding box. This is because each object only has to store one 

equation to represent its bounding sphere. Then, simple algebra can test for intersections 

between each sphere in the scene. 

 Initially, each object must have a bounding sphere generated for it. This requires 

the algorithm to decide on a center point for the object that will minimize the sphere 

radius. This can be tough as the chosen point must minimize radius in all directions. 

Further, as with bounding boxes, bounding spheres are very conservative estimates of an 

object’s volume and thus, still only provide very coarse collision detection. 
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Figure 2: Example Bounding Spheres 

 Figure 2 shows an example intersection between two bounding spheres. As can be 

seen from figure 2, intersection of the two objects is reported because the two bounding 

spheres intersect at the location of the shaded ellipse. Similar to the bounding box 

algorithm, many false collisions (positives) may be reported between two bounding 

spheres where the enclosed objects might not actually intersect. 

 The space complexity of the bounding sphere algorithm is very good, and is 

actually better than that of the bounding box algorithm. This is because each object must 

only store two values: a radius and a center. These two values are enough to represent a 

sphere. Alternatively, the algorithm could store the equation of the bounding sphere while 

still keeping space complexity low. Therefore, the bounding sphere algorithm 

experiences a space complexity of O(2) and Ω(2) (nb: the space required to store the 

values for an equation is the same as the space required to store the radius and center). 

The time complexity of the bounding sphere algorithm is still O(n2) (where n is the 

number of objects in the scene), which is quite poor. This is because, in the worst case, 

each sphere would need to be tested for intersection with each other sphere in the scene. 

However, fewer comparisons would be required than with bounding boxes. This is 

because only one intersection test must be performed per pair of objects instead of 36. 

 As with the bounding box algorithm, the bounding sphere algorithm implements 

very coarse collision detection. This is due to the fairly conservative representation of the 

object as a sphere. However, representing an object as a sphere is less conservative than 

representing it as a cube (except in special cases). As well, the bounding sphere algorithm 

executes quite slowly when there are many objects in the scene. However, significantly 
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fewer calculations are performed to check for intersections between spheres than to check 

for intersections between cubes. This algorithm is even easier to implement than the 

bounding box algorithm due to the reduced number of calculations. Also, less space is 

consumed to store sphere objects than to store cube objects due to the smaller number of 

values required to represent a sphere. 

 

 2.3) The Binary Space Partitioning Tree Algorithm 

 Binary space partitioning (BSP) trees are used to break a 3D object into pieces for 

easy comparison [1]. To construct a BSP tree, the space occupied by an object is 

recursively broken into smaller pieces and inserted into a tree (quadtree for 2D objects, 

octree for 3D objects, etc). Traversing the various levels of two BSP trees can then check 

for intersections between the spaces two objects occupy. Each BSP tree contains a set of 

nodes. Internal nodes represent a certain portion of the space that an object resides in, and 

contains the portion of the object that resides in that space. The external (or leaf) nodes of 

the tree hold the polygons that make up the object. In this manner, intersections can be 

tested at a very fine grain with the individual polygons themselves. 

 When constructing a BSP tree, the object model is refined by recursively defining 

the model at tree level i+1 to contain a subset of the object’s space and geometry stored at 

tree level i. The algorithm stops refining the model when it reaches one of a few cases: 

Case 1: The pre-defined minimum physical size for the section of space that is 

being modeled has been reached. For example, when the size of the section of 

space reaches 1 pixel cubed, ten pixels cubed, etc. This allows the implementer to 

assign a physical scale of accuracy to their collision detection. 
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Case 2: A maximum tree depth has been reached. For example, the BSP tree 

reaches 10 levels, 20 levels, etc. This allows the implementer to ensure a 

maximum processing time for their collision detection. 

Case 3: Each polygon used to define an object has been placed in a leaf node. For 

example, each leaf node in the BSP tree contains exactly one polygon from the 

object geometry. This allows the implementer to ensure that a small number of 

calculations need to be performed at the leaf level in order to detect a collision. 

Etc: The exit case for constructing a BSP tree depends on the implementer. 

However, the above exit cases are the ones most frequently used when creating 

BSP trees. 

 

3a. Level 0 (Root) of a BSP Tree 

 

3b. Level 1 of a BSP Tree 

 

3c. Level 2 of a BSP Tree 
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3d. Level 3 of a BSP Tree 

Figure 3: Partitioning of a 2D Shape for a BSP Tree 

 Figure 3 shows the gradual partitioning of a 2D object (in this case a star) into 

sections to be put into a BSP tree. As can be seen from 3a, the root level of the tree 

contains the entire object enclosed in a bounding box. Level 1 contains the object split 

into four quadrants as seen in 3b, etc. In the example, this partitioning continues to level 

3, providing a tree depth of 4. (nb.: this tree is a quadtree as each node has four children. 

A 3D object would be stored in an octree). 

 Once two BSP trees are constructed, they can be tested for collisions. Collision 

detection with BSP trees proceeds recursively by checking if successive levels of the 

trees intersect. If the two intersecting tree spaces being tested contain polygons, and the 

intersecting spaces are in internal nodes, the algorithm assumes an intersection occurs 

and processes the next level. If the two intersecting tree spaces being tested contain 

polygons, and the intersecting spaces are in leaf nodes, the algorithm tests the actual 

polygons for intersection and returns the result. If one of the tree sections being tested 

does not contain polygons, the algorithm can assume that no intersection occurs between 

the two objects. 

 

4a. Intersection Test Between Two Objects in 3D 
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4b. Intersecting Root Level of Two BSP Trees 

 

4c. Intersecting 1st Level of Two BSP Trees 

 

4d. Intersecting 2nd Level of Two BSP Trees 

 

4e. Intersecting 3rd Level of Two BSP Trees 

Figure 4: Collision Detection Using BSP Trees 

 Figure 4 illustrates an example collision test between two objects with 

overlapping root levels. In this case, intersection testing proceeds to level 3 where an 

intersection between polygons is found in the shaded portion of the image shown in 4e. 

 With the BSP tree algorithm, each object must store a BSP tree. The leaves of this 

tree contain polygons with geometries stored as integer coordinates in X-space (i.e.: 2-

space, 3-space, etc). Therefore, the space required by each object depends on the height, 

h, of the BSP tree that stores it, and the number of polygons, n, that make up the object 

(nb: assume objects are composed of convex triangles as these are the most common 

polygons used to model objects). For this reason, the amount of space consumed by each 

object in memory is O(Xh + 3n) and Ω(Xh + 3n). 
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 Using the BSP tree algorithm, each object must still be tested for collision with 

each other object in the scene. And, as with bounding boxes, face intersections must be 

tested for each object space. Thus, to determine if further processing is required, O(n2) 

work must be done to find intersecting objects at the coarsest level. Then, if an 

intersection is found between two objects, further testing must be performed on the 

various levels of their BSP trees. Thus, an additional O(h) tests must be performed 

between spaces in the BSP trees. Therefore, the final time complexity of this algorithm is, 

in the worst case, O(n2 + m*h) if m intersections are found, and, in the best case, Ω(n2) if 

no intersections are found, assuming that each BSP tree has the same height, h. 

 The BSP tree collision detection algorithm is quite complex to implement. This is 

due to the complexity involved in constructing BSP trees, and the number of intersections 

that must be tested. As well, this algorithm is still very slow to process scenes with large 

numbers of objects, and consumes significantly more space than both the bounding box 

algorithm and the bounding sphere algorithm. However, collision detection with BSP 

trees does provide fine-grain collision detection, as opposed to the very coarse grain 

detection provided by the other two. 

 

 2.4) Space-Time Bounds 

 Hubbard, et al, proposed an algorithm that makes use of “sphere trees” and 

“space-time bounds” to iteratively refine collision detection accuracy proportional to the 

amount of processing time an application implementing the algorithm can spare [4]. 

Hubbard’s algorithm works in two phases: the broad phase constructs space-time bounds 
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and does coarse grain comparisons; the narrow phase refines detection using sphere trees 

to determine if a collision detected in the broad phase really does occur. 

 The broad phase of Hubbard’s algorithm constructs space-time bounds (4D 

structures that give a conservative estimate of an object’s position over time) and tests 

them to find intersections at time ti between object Ox and Oy. As well, the algorithm 

looks only for the earliest time when an intersection between any two objects occurs, and 

can stop processing any collision detection until the scene reaches that time. Once the 

scene advances to time ti, the algorithm reruns the broad phase to determine if an 

intersection still occurs between bounds. If it does, the intersecting objects are referred to 

the narrow phase for processing. If it does not, the broad phase finds the next intersection 

and continues. 

 The narrow phase of Hubbard’s algorithm seeks to iteratively refine intersection 

testing accuracy using better approximations to objects as stored in lower sphere tree 

levels. Sphere trees are simple tree structures that store a series of overlapping spheres 

that completely enclose an object. Spheres in each successive level of a sphere tree better 

approximates the object. Thus, the algorithm can recursively check for intersections 

between two objects while only processing small parts of the sphere trees. Each time the 

narrow phase finishes processing a level of two object’s sphere trees, it allows the 

application to interrupt and stop processing. This allows the application to receive 

detection accuracy proportional to the amount of processing time that it can spare. The 

narrow phase will exit on one of three cases: 

Case 1: The system interrupts the narrow phase after it processes a given level, i. 

The returned result of detection is the result currently obtained after processing 
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level i of the object’s sphere trees. This may lead to the report of a false positive 

(i.e.: a collision that exists at level i of a tree, but not at level i+1, i+2, etc). 

Case 2: The narrow phase finds no intersection at a sphere tree level. The result of 

detection is, intuitively, false. 

Case 3: The narrow phase reaches the leaf level of the sphere trees and still 

detects a collision. Thus, the result of detection is, intuitively, true. 

•Start System 
–Construct Sphere Trees 
–Run scene 
•Broad Phase on Frame 1 
–Calculates space-time bounds 
–Finds intersection - O1 and O2 at ti = 5 
•Run scene to Frame 5 
•Broad Phase on Frame 5 
–Detects no collision on bounding 
spheres 
–Calculates space-time bounds 
–Finds intersection - O2 and O3 at ti = 7 
•Run scene to Frame 7 
•Broad Phase on Frame 7 
–Detects collision on bounding spheres 
•Narrow Phase on Frame 7 for O2 & O3 
–Detects collision on level 1 spheres 
–Detects collision on level 2 spheres 
–Detects no collision on level 3 spheres 
•Exit case 2  
•Broad Phase on Frame 8 
–Calculates space-time bounds 
–Finds intersection - O3 and O4 at ti = 10 

•Run scene to Frame 10 
•Broad Phase on Frame 10 
–Detects collision on bounding spheres 
•Narrow Phase on Frame 10 for O3 and O4 
–Detects collision on level 1 spheres 
–Detects collision on level 2 spheres 
–Detects collision on level 3 spheres 
–No more levels - collision detected 
•Exit case 3 
•Broad Phase on Frame 11 
–Calculates space-time bounds 
–Finds intersection - O4 and O5 at ti = 12 
•Run scene to Frame 12 
•Broad Phase on Frame 12 
–Detects collision on bounding spheres 
•Narrow Phase on Frame 12 for O4 and O5 
–Detects collision on level 1 spheres 
–Detects collision on level 2 spheres 
–Detects collision on level 3 spheres 
–Interrupted - collision currently detected 
•Exit case 1 

Figure 5: Example Sequence of Events for Hubbard’s Algorithm  

 Figure 5 shows an example sequence of events in an application implementing 

Hubbard’s algorithm. This example sequence shows the use of all three exit cases (at 

frames 7, 10 and 12) for the narrow phase, and how narrow phase detection can be called 

off (at frame 5) if broad phase detection no longer finds a collision. 
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| a(t) | ≤ M until t = tj 
 

Inequality 1: Bounding of an Object’s Acceleration 

 
| pt - [p0 + v(0)t] | ≤ (M / 2)t2 

 
Inequality 2: Bounding of an Object’s Position 

 As mentioned above, Hubbard’s algorithm makes use of space-time bounds. 

Space-time bounds are 4D structures that represent a conservative estimate of the 

possible 3D location of an object over time, the fourth dimension. The application 

providing the object data thus knows the object’s position, p = (x,y,z), its velocity vector, 

v(t) = (x,y,z), its acceleration vector, a(t) = (x,y,z), and a value M, such that inequality 1 

holds. When looking at inequality 1, notice that the magnitude of an object’s acceleration 

in any direction cannot be greater than the value M. This leads to the observation stated 

in inequality 2. When looking at inequality 2, notice that the affect of an object’s 

acceleration over time cannot put its position more than (M / 2)t2 away from the position 

it is supposed to be in. Thus, the object’s position is inside a sphere of radius (M / 2)t2 

centered at the point p0 + v(0)t. This is because the object’s acceleration over time could 

not have increased or decreased the object’s velocity enough to move it more than (M / 

2)t2 off of the current calculated position. 

 

6a) An Object’s Possible Position at t = 0 
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6b) An Object’s Possible Position at t = 0.1 

 

6c) An Object’s Possible Position at t = 0.2 

 

6d) An Object’s Possible Position Between 
0 ≤ t ≤ 0.6 

 

6e) A Possible Enclosing Hypertrapezoid 
for an Object’s Position Between 0 ≤ t ≤ 0.6 

Figure 6: Bounding an Object’s Position Over Time 

 Figures 6a – 6d show the bounding spheres of size (M / 2)t2 that bound an object’s 

position over time 0 ≤ t ≤ 0.6. Figure 6e shows a hypertrapezoid that would contain, 

conservatively, all bounding spheres of size (M / 2)t2 for an object between 0 ≤ t ≤ 0.6. 

Thus, the object is guaranteed to be within this hypertrapezoid from 0 ≤ t ≤ 0.6. This 

approximation obviously results in large amounts of conservatism since the enclosing 

hypertrapezoid bounds areas that an object could never occupy. If the application knows 

that an object’s acceleration is limited to a certain directional vector, d(t) = (x,y,z), the 

algorithm can generate a “cutting plane”. Vector d(t) says that an object will never head 

in a certain direction, and a cutting plane allows the algorithm to remove the space 

(behind d(t)) from a hypertrapezoid that an object will never occupy. Thus, a cutting 

plane allows the algorithm to reduce the size of the enclosing hypertrapezoid and make 
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more accurate broad phase collision detections. However, the application must also 

provide the algorithm with the vector, d(t). 

 

Figure 7: A Complete Space-Time Bound 

 A complete space-time bound consists of an application provided M, d(t), a 

calculated hypertrapezoid, T, and a calculated cutting plane, P. Figure 7 provides a 

graphic representation of a possible space-time bound for an object. The cubes represent 

T, and the blue plane represents P. 

 Space-time bounds are interesting structures, but they serve a very important 

purpose. If two space-time bounds intersect, a very coarse level collision has been 

detected. The intersection of two space-time bounds, B1 and B2, can happen in three 

ways: 

Case 1: A face, f1, of T1, intersects a face, f2, of T2. In this case, two faces of two 

hypertrapezoids have intersected. 

Case 2: A face, f, of T1 intersects a cutting plane, P, of T2. In this case, a face has 

intersected a cutting plane. Since an object can never be behind a cutting plane, 

the algorithm only cares about the part of f that is in front of P. In order to get in 

front of P, f must intersect another face. Thus, case 2 has been reduced to case 1. 



  Young, 18 

Case 3: A cutting plane, P1, of T1 intersects a cutting plane, P2, of T2. In this case, 

two cutting planes have intersected. As in case 2, an object can never be behind a 

cutting plane. Thus, the algorithm is only concerned with the part of P1 that is in 

front of P2, and vice versa. As in case 2, to get in front of a cutting plane, a face 

from T1 must intersect a face from T2. Thus, case 3 has been reduced to case 1. 

Three intersection cases have been reduced to one important case. So, the algorithm is 

only concerned with the intersection of two faces. 

 
Each face, f, of a hypertrapezoid, T, is “normal” to one 

of the planes of the coordinate system 
 

Axiom 1 

 
Each face, f, is included in a face set, Fa 

Fa = { f | f is normal to the a-t plane}, a in {x, y, z} 
 

Axiom 2 

 
Each intersection takes place between two 

faces in the same face set, Fa 
 

Axiom 3 

 Finding intersections between faces relies on axioms 1 to 3 listed above. Axioms 

have already been proved by Hubbard and will not be proven here. Axioms 1 to 3 provide 

an important optimization: in order to find intersections between hypertrapezoid faces, 

the algorithm must only test for intersections between faces within a normalized face set. 

Thus, the algorithm only has to test for intersections between all faces in Fx, then Fy, and 

finally Fz. This significantly reduces the number of intersection tests that need to be 

performed. 
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 Intersections between faces can be found using one of two methods: projection or 

subdivision. With projection, hypertrapezoid faces are projected onto the a-t plane and 

tested for intersections with other faces in the same face set. With subdivision, cross-

sections of the hypertrapezoid are tested for intersection recursively until one is found, or 

until the algorithm reaches some predefined ∆t. 

 

8a) Space-Time Bounds that Might Intersect 

 

8b) Faces of the Hypertrapezoid 

 

8c) Faces Projected onto t-z Plane 

 

8d) Intersection Found at t = 1 

 

8e) Intersection of Cube Cross-Sections 

 

8f) Intersection of Cube Cross-Sections 
Below the Cutting Plane 

Figure 8: Intersection Testing With Projection 
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 The projection method of intersection testing follows a set of four steps: 

Step 1: Project each face in a face set, Fa, onto the a-t plane. Figure 8b shows two 

faces in the Fz set that are about to be tested for intersection (nb: these two faces 

belong to the hypertrapezoids in figure 8a). The two faces are projected onto the 

z-t plane in figure 8c. As 8c shows, faces appear as 2D lines in the plane. 

Intersection of these lines is necessary but not sufficient for an intersection of two 

faces to take place. This is because the hypertrapezoids must cross paths at time ti 

(necessary condition). But, the algorithm must also check if they occupy the same 

space at time ti (sufficient condition). 

Step 2: Find intersections between 2D line segments. Using trivial mathematics 

and linear algebra, the algorithm notes an intersection between two line segments. 

The two projected faces shown in figure 8c are drawn with an intersection point in 

figure 8d. This intersection point, I, is placed in an intersection set. I contains the 

faces that intersected as well as the point, t, on the t axis where they crossed. 

Step 3: Check for intersections, at time t, of cube cross-sections of the 

hypertrapezoids that the faces in I belong to. Using trivial mathematics and linear 

algebra, the algorithm tests the cube cross-sections of the two hypertrapezoids for 

intersection. If the two cubes intersect each other, the algorithm has detected a 

coarse collision at time t, and keeps this intersection in the intersection set. If the 

cubes do not collide, the intersection is removed from the intersection set. The 

cube cross-sections of the hypertrapezoids shown in figure 8a are tested for 

intersection at time t=1 as shown in figure 8e. 
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Step 4: Determine if the point of intersection is behind a cutting plane for either 

hypertrapezoid. Using trivial mathematics and linear algebra, the algorithm can 

check if the intersection of the two hypertrapezoids takes place behind either of 

the cutting planes. If it does, as in figure 8f, the intersection is removed from the 

intersection set. If not, the intersection is retained. 

Once the algorithm has found all intersections between space-time bounds, processing 

can begin with the earliest intersection in the intersection set. 

 

9a) Space-Time Bounds that Might Intersect 

 

9b) 1st Subdivision of Bounds 

 

9c) 2nd Subdivision of Bounds 

 

9d) 3rd Subdivision of Bounds (∆t Reached) 

Figure 9: Intersection Testing With Subdivision 

 The subdivision method recursively divides the (possibly) intersecting 

hypertrapezoids in half seeking the point in time when they collide. Intersection testing 
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involves checking for intersections between any pair of faces belonging to the two 

hypertrapezoids currently being processed. If there is an intersection, the hypertrapezoid 

is cut in half and recursively tested again. The exit case is the time, t, at which the two 

faces intersect, or when the size of a time slice is smaller than some threshold, ∆t, 

provided by the application. Figure 9 shows a possible set of subdivisions. Figure 9a 

shows the original hypertrapezoids. 9b – 9d highlight the section of the two 

hypertrapezoids that was found to intersect. The exit case is reached in 9d when the size 

of the time slice reaches ∆t. 

 The projection method of intersection testing is more difficult to implement than 

the subdivision method. However, subdivision is prone to suffer false positives due to a 

bad ∆t value, and does not save future processing by discarding intersections behind the 

cutting planes. Also, the projection method executed faster during empirical testing. Tests 

consisted of 200 sets of randomly distributed hypertrapezoids of varying parameters (i.e.: 

geometry, velocity, etc.). Thus, Hubbard’s algorithm implements the projection method 

of intersection testing to find intersections between space-time bounds. 

 

10a) Root Level (Level 0) of a Sphere Tree 

 

10b) Level 1 of a Sphere Tree 

 

10c) Level 2 of a Sphere Tree 

Figure 10: Possible Sphere Tree for an Object 

 As mentioned above, sphere trees are used for fine-grain intersection testing in the 

narrow phase. A sphere tree is a constant refinement of a bounding sphere for an object. 
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In a sphere tree, an object is represented as a set of overlapping spheres that contain the 

object’s geometry. The overlapping spheres are constantly refined into larger sets of 

smaller spheres until the application’s requested accuracy level is attained. So, the 

spheres at level i+1 of the sphere tree approximate the object more accurately than the 

spheres at level i. Spheres are used because of the ease with which they may be 

compared. Figure 10 shows a possible sphere tree for an object. 10a shows the bounding 

sphere for the object that is stored at the root level of the tree (i.e.: level 0). 10b shows 

level 1 of the sphere tree, etc. The spheres in 10b more closely approximate the object 

than the bounding sphere in 10a. The spheres in 10c more closely approximate the object 

than the spheres in 10b. This object has a sphere tree with three levels. Accuracy of a 

sphere tree, or “tightness of fit”, is important to ensure that the algorithm performs the 

most accurate collision detection possible at each level of processing. Since the 

application can interrupt the narrow phase at any time, the algorithm aims to have the 

most accurate collision detection possible after each iteration. 

 
Figure 11: First Iteration of the Medial-Axis Surface Algorithm 

 Construction of a sphere tree is a form of multi-resolution modeling. Multi-

resolution modeling is a complex task that is tough to automate efficiently. The medial-

axis surface method is one method used to construct sphere trees. A medial-axis surface 

corresponds to the “skeleton” of an object. For 3D objects, this surface is very difficult to 

build. Thus, the algorithm works in reverse in order to generate a sphere tree of tightest 

fit. The algorithm starts by covering the object with very tightly fitting spheres first, as 
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shown in figure 11. These spheres cover the maximum volume of the object while 

minimizing the wasted space in each sphere. They also make up the leaf level of the 

sphere tree. Then, adjacent spheres are combined into larger spheres and inserted into the 

sphere tree one level above. The algorithm exits when all spheres have been combined 

into one bounding sphere at the root of the tree. In this manner, the sphere tree is 

effectively constructed bottom-up. Unfortunately, this algorithm takes a large amount of 

processing time. In one test, the algorithm took 12.4 minutes to generate the sphere tree 

for an object composed of 626 triangles. However, this processing must only be done 

once to construct the sphere tree, as the tree can be reused at each iteration of the narrow 

phase. 

 

12a) A Sample Scene 

 

12b) A Sphere Tree for O1 

 

12c) A Sphere Tree for O2 
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12d) Initial Space-Time Bounds for O1 and O2 

 

12e) Initial Intersection for O1 and O2 is at ti=5 

 

12f) Initial Intersection Above Cut Planes 

 

12g) Scene at ti = 5 

 

12h) Intersecting Root Level Sphere Trees 

 

12i) Intersecting Level 1 Sphere Trees 

 

12j) Intersecting Level 2 Sphere Trees 

Figure 12: Processing of a Scene 

 Now that all portions of Hubbard’s algorithm have been discussed, perhaps a brief 

example scene will aid the reader in understanding how the various pieces fit together. 

When the algorithm starts, the object models and values of M and d(t) are taken as input. 

From this information, the system generates a sphere tree for each object. The scene is 



  Young, 26 

then advanced to the first frame, and the broad phase is run. The broad phase calculates 

the hypertrapezoid and cutting plane for each object. Then, the time, ti, of the first 

intersection is calculated and the scene is run to that frame. Next, broad and narrow phase 

testing are run as outlined above. Figure 12 presents a possible scene processing with 

Hubbard’s algorithm. Figure 12a shows the initial objects with their velocities and 

accelerations. 12b and 12c show the constructed sphere trees for the two objects. 12d 

shows the set of initial space-time bounds for the two objects, and 12e shows the 

projection of the two intersecting faces onto the z-t plane. An intersection is noted 

between O1 and O2 at time ti=5. 12f shows that the intersection between the cube cross-

sections is above the cut planes, and the intersection is retained. The scene is then 

advanced to time t=5. The space-time bounds are recalculated and found to intersect. The 

objects are then referred to the narrow phase for further processing. Figure 12g shows the 

positions of the two objects at time t=5. 12h shows an intersection between the root level 

of the sphere trees. 12i shows an intersection between level 1 of the sphere trees. 12j 

shows an intersection between level 2 of the sphere trees. Since no more levels exist in 

the object’s sphere trees, a collision is reported to the application at time 5 between object 

O1 and O2. Note that the application could have interrupted processing at any stage and a 

collision would still be reported as one was detected at each level of processing. Also, the 

narrow phase could have exited if no intersection was found at a lower level of the sphere 

tree. Since there were no lower levels to process, a collision was reported. 

All cases 
Level Number Mean Speedup 

1 50042 1049.3 
2 5079 581.6 
3 2180 243.2 
4 915 112.8 
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5(exact) 483 2.7 
Figure 13: Mean Speedup Experienced by Hubbard’s Algorithm 

 Hubbard’s algorithm was empirically tested against Turk’s method of collision 

detection. Turk’s method tests for intersections between spheres stored in a BSP tree 

without the use of space-time bounds. The empirical tests showed that if collisions are 

found early in a scene (i.e.: before 0.25 seconds have elapsed), Turk’s method detects 

them faster. Otherwise, Hubbard’s algorithm experiences a detection speed boost of 

approximately 10 times over Turk’s algorithm. Figure 13 shows the mean speedup 

experienced by Hubbard’s algorithm, in percent speed increase, for all collision 

detections that reach level x processing of the sphere or BSP trees. The reduction in mean 

speedup at lower levels of tree processing is not addressed by Hubbard in “Collision 

detection for interactive graphics applications”. Also, accuracy of detection is not 

discussed or compared. 

 Hubbard’s algorithm must store a hypertrapezoid (16 4D points), a sphere tree (Xh 

links and Xh spheres, where X is the maximum fan-out at any sphere tree level), a set of 

bounding values (M and d(t)), and the object’s description (p(t), v(t), a(t)). Then, the 

space required to store an object is O(2(Xh) + 23) and Ω(2(Xh) + 23). 

 During the broad phase, Hubbard’s algorithm must compare each face to each 

other face in a given face set. In the best case, the first test will yield an intersection 

between two faces in the very next frame. This means that the broad phase needs to 

execute Ω(1) operations. However, in the worst case, the broad phase must do O(3(2n)2) 

= O(n2) comparisons (where n is the number of objects in the scene). During the narrow 

phase, Hubbard’s algorithm must compare spheres in the sphere tree for two colliding 

objects. In the best case, only one comparison is required to tell that no intersection has 
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taken place. Thus, the algorithm requires only Ω(1) comparisons. In the worst case, the 

entire sphere tree must be traversed in order to find or discount an intersection. Thus, the 

algorithm requires O(h) comparisons (where h is the height of the sphere tree), again 

assuming that each sphere tree has the same height. So, in the best case, the algorithm has 

to perform only Ω(2) comparisons for each run of the collision detection algorithm. But, 

in the worst case, the algorithm must perform O(n2 + h) comparisons. 

 Hubbard’s algorithm allows average-case real-time collision detection due to its 

ability to avoid processing during intermediate frames. It also experiences very fine grain 

collision detection with the use of sphere trees. Hubbard’s algorithm is empirically faster 

than Turk’s, which was previously thought to provide the fastest and most accurate 

collision detection. However, Hubbard’s algorithm may experience false positives if 

applications interrupt processing too early in the narrow phase, constructing sphere trees 

is very slow. 

 

3) Conclusion 

 The bounding box algorithm is efficient in space but not in computation time. 

Also, the bounding box algorithm provides very inaccurate collision detection and cannot 

run in real-time. In contrast, the bounding sphere algorithm is more efficient in space and 

time than the bounding box algorithm. Also, the bounding sphere algorithm slightly 

improves the accuracy of detection, but still does not run in real-time. 

 The BSP tree algorithm is not very efficient in space or time, and does not run in 

real-time. However, the BSP tree algorithm is able to provide quite accurate collision 

detection. In contrast, Hubbard’s algorithm provides very accurate collision detection 
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while being relatively efficient in space consumption. However, Hubbard’s algorithm is 

only real-time in the average case. When the number of objects in the scene increases, 

Hubbard’s algorithm slows.  

 The “best” collision detection algorithm depends on the application. Bounding 

box and bounding sphere algorithms are useful for scenes containing objects of that 

approximate shape. Also, for the faster detection required by primitive games or primitive 

scene generation, these algorithms might be ideal. BSP tree algorithms are useful in a 

scene that contains objects that are not known to the system ahead of time (i.e.: auto 

collision, etc). This is because the BSP trees can be constructed on-the-fly if necessary as 

the objects are being processed. Hubbard’s algorithm performs best for most real-world 

applications where objects are known to the system ahead of time (i.e.: games, 

simulations, animation, Air Traffic Control, etc.). This is because object models can be 

used to quickly and very accurately detect collisions on a fine grain scale. 

 Collision detection is a difficult problem for a computer to solve efficiently. Many 

different strategies exist to perform accurate detection or detection in near real-time. 

Detection algorithms have not progressed significantly over recent years. This is mainly 

due to the fact that most researchers are now using image processing techniques, instead 

of object models, for collision detection. 
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