
CS 848: Project Proposal 
W Anthony Young - 20161423 

October 3rd, 2004 
 
 A database is a collection of records stored on a computer. A database 
is more than that: databases contain the information that keeps our society 
working. Businesses store employee, product, inventory, customer and 
invoicing information. Schools store student academic records, contact and 
timetable information. Health professionals store patient and surgery 
information. Our world is composed of vital data, and that data comes from 
many different sources 
 Traditionally, data is stored in several different tables, within several 
different databases, and often on several different machines. For example, a 
moving company with offices around Canada could potentially have a 
different database server for each office. In this manner, it would be up to a 
local database administrator to control the type of information stored, the 
architecture of the system used to store it, and so on. Suppose a customer 
arrives at one office and has questions requiring information stored at a 
second office. How can this information be retrieved? How does the 
employee know what the table and column names are? 
 Enter “multidatabase systems”. A multidatabase (or federated 
database) system is a piece of software capable of bridging the gap between 
information at different data sites. Federated database systems have the 
power to retrieve information stored in many different databases on many 
different servers across a network. With our above example, a federated 
database system would be able to link the office databases from around the 
country for our moving company. Then, our employee would be able to find 
the information required by our customer quickly and efficiently. 
 Federated database systems pose many interesting challenges for 
query routing, optimization and execution. Some of the greatest challenges 
faced are: 
 

• Varying capabilities: Each site may run a different database 
management system (DBMS) to store their data. As well, some sites 
might not implement all features of the query language they use to 
access data. How can we perform queries that require data from sites 
that do not have the capability to perform certain operations? For 
example, how can we perform ranking operations on data stored at a 
site that does not implement the SQL ranking specification? 



• Schema translation: When a global schema is created to give a view of 
the data stored at local sites, we must often map table and column 
names in order to consolidate data into common stores at the federated 
level. For example, one site may store customer data in a table called 
“cust_data” while a second site might store data in a table called 
“customer_information”. In the global schema these tables might be 
mapped to one common table called “Customers”. When submitting 
queries to local sites through the federated system, a query must be 
translated to contain the names of local tables and columns. Speed and 
efficiency are paramount when performing these translations. 

• Global query optimization without local information: A federated 
database consists of a global view of the data stored at multiple local 
sites. How can we optimize a query to be run at a subset of local sites 
if we do not have cost parameters for data stored at those sites? 
Additionally, we must take into account the overhead of local system 
load, disk access times, indices and network transport. Much of the 
information required to make these cost evaluations exists at local 
sites, but is not accessible by our global query optimizer at the 
federated site. Can we access those statistics in some way? 

 
 Currently, I am working with the iAnywhere Solutions Research and 
Development team investigating federated database technology. My position 
requires me to research state of the art technologies for federating data and 
globally optimizing queries. Unfortunately, I am not able to discuss my 
position further due to my agreement with iAnywhere Solutions. I propose 
to combine some research performed at iAnywhere with my course project 
for CS 848. As part of my iAnywhere project, I will be reading about and 
evaluating different federation technologies. However, I will not be 
discussing ways of collecting statistics for use in global query optimization. 
I propose a paper outlined as follows: 
 

• Discuss and evaluate federated database technologies and techniques: 
Some systems to be evaluated include Mermaid, InterViso and IBM’s 
Information Integrator. I hope to gain an insight into the way these 
systems work and how they can be improved. 

• Discuss and evaluate statistical global query optimization methods: 
There are many ways to use statistics to optimize queries. Sampling 
and reduction-based methods are two of the strategies that I would 
like to investigate further to understand some of the challenges that 
different strategies address. 



• Discuss and evaluate different methods for collecting local statistics 
for global query optimization: Global query optimization depends 
quite heavily on statistics. As such, we need methods to collect these 
statistics from local sites. Collection utilities and query piggybacking 
are two proposed statistics collection methods. I would like to 
investigate others and see how well they stack up against each other. 

 
 This project would require additional work beyond my iAnywhere 
project, as its scope does not currently include researching local statistics 
collection methods. It is my intention to publish my findings in a paper 
submitted to reputable journals and conferences. 


