
Introducing PATTY: Peer dATabase securiTY

Tony Young - 20161423
CS 856 - Fall 2004

December 3, 2004

Abstract

Database systems have been in use for decades to store information. No matter where
they are used, databases have the power to organize our information and help us access
it efficiently. Distributed databases have also been in use for many years. They provide
improved query performance, a high level of expandability, improved reliability, easy data
sharing, and improved availability of access [18]. Recently, peer-to-peer architecture has
been applied to database systems. This architecture allows a system to act as both a
client for performing queries and interacting with the user, and as a server to provide
results to queries posed by other clients [17].

Peer-to-Peer (peer) databases are fundamentally different from traditional and dis-
tributed databases in several key ways: nodes may join and leave a peer network at any
time, the schema for a peer database is not global, the data in a peer database might not
be complete, and queries in peer databases must be routed to many nodes. Peer database
systems can be applied to many fields, for example contact information management,
development environment configuration management, genomics, and healthcare.

There are several key issues of importance to peer database systems. Among these
issues are user authentication and security. Until now, security services have not been
implemented in peer database systems, as the idea of organizing databases in a peer
manner is relatively new. This paper presents a framework for Peer dATabase securiTY
(PATTY). An implementation and evaluation are proposed. Some analysis of the security
offered by PATTY is provided.

1

Contents

1 Introduction to Peer Database Systems 4
1.1 Fundamental Differences . 4
1.2 Applications . 6
1.3 Important Characteristics . 7

1.3.1 Scalability . 8
1.3.2 Availability . 8
1.3.3 Performance . 8
1.3.4 Data Authenticity . 8
1.3.5 Security . 9

2 Peer Database Systems 9
2.1 Introducing APPOINT . 9
2.2 Introducing DBGlobe . 10
2.3 Introducing Edutella . 11
2.4 Introducing PeerDB . 12

3 Meet PATTY 13
3.1 Design Goals . 13
3.2 Influence from Current Literature . 13
3.3 Data Encryption Services . 14
3.4 Authentication Services . 14
3.5 Query Routing . 15
3.6 Evaluation . 15

3.6.1 Attacks . 16
3.6.2 Metrics . 16
3.6.3 Implementation Proposal . 17

4 Authentication Protocols 18
4.1 Traditional Authentication . 18
4.2 Group-Based Authentication . 18

4.2.1 Troups . 18
4.2.2 Secret Shares . 19
4.2.3 Secure Groups . 19
4.2.4 Strong Secure Groups . 20

4.3 Certificate-Based Authentication . 20
4.3.1 Credential Certificates . 20
4.3.2 Signed Certificates . 20

4.4 Remote Authentication . 21

5 Data Encryption Protocols 21
5.1 Data Encryption for Storage . 21

5.1.1 Chaotic Maps . 22
5.1.2 Data Encryption Standard . 22

2

5.1.3 International Data Encryption Algorithm 22
5.2 Data Encryption for Communication . 22

5.2.1 Shared-Key Encryption . 23
5.2.2 Public-Key Encryption . 23

6 Conclusion 23

3

SELECT Min(Price)
FROM Products
WHERE ProductName = ’Apple PowerMac G5 Dual 2GHz’

Figure 1: An Example Query

1 Introduction to Peer Database Systems

Database systems have been in use for decades to store information. Large organizations
store employee, customer and product information. Healthcare professionals store patient
information. Researchers keep data on research projects. No matter where they are used,
databases have the power to organize our information and help us access it efficiently.

Distributed databases have also been in use for many years. They provide improved query
performance, a high level of expandability, improved reliability, easy data sharing, and im-
proved availability of access [18]. Distributed databases provide an organization the flexibility
to tune storage and access protocols to suit their infrastructure. For example, data that is
frequently used can be replicated to reduce response time. As well, data can be spread across
many servers to increase redundancy.

Recently, peer-to-peer architecture has been applied to database systems. This architecture
allows a system to act as both a client for performing queries and interacting with the user,
and as a server to provide results to queries posed by other clients [17].

1.1 Fundamental Differences

Peer-to-peer (peer) database systems are fundamentally different from distributed and tradi-
tional database systems in several ways. One of these fundamental differences is that nodes
may join and leave a peer network at any time. In distributed and traditional systems, nodes
are added out of necessity (i.e. for redundancy or growth) and are known to the cluster ahead
of time [16]. However, a peer may join an information-sharing network at any time, and should
only have its resources added to the resource pool when it comes online. Also, peer nodes are
not necessarily known ahead of time. This “arbitrary join” paradigm for peer systems poses
challenges to finding data with queries, providing complete data through queries, and locating
peers on a network.

Take the query in Figure 1 as an example. With this query, the user is looking for the
lowest price for a product. If node n1 contains a cheaper product than peer node n2, and n1

is unavailable, the user will receive an incorrect result from their query. Also, how does the
node performing the query know to which IP addresses the SQL statement should be sent in
order to reach other peers?

A second fundamental difference between peer and distributed or traditional databases is
that the schema for a peer database is not global. In traditional and distributed systems, the
schema is standardized across each node. In a peer database system, several schemas may
be used to represent the same type of data at different nodes [16]. For example, imagine a
peer network with two nodes each containing a database of contact information. Node n3

4

TABLE: Contacts {
LName VARCHAR 25;
FName VARCHAR 25;
Phone INT;
Email VARCHAR 50;
Address VARCHAR 100;
}

Figure 2: An Example Schema for Node n3

TABLE: contact info {
Lastname TEXT 15;
Firstname TEXT 15;
Phonenumber TEXT 10;
Emailaddress TEXT 40;
Homeaddress TEXT 50;
}

Figure 3: An Example Schema for Node n4

may store contact information in a schema such as the one in Figure 2. Also, node n4 may
store contact information in a schema such as the one in Figure 3. This “arbitrary schema”
paradigm for peer database systems poses problems for query completeness. For example, n3

might be searching for contact information and receive a false negative when querying n4 with
a statement such as the one in Figure 4. In this case, n4 might actually contain a record for
John Doe. But, because records are stored in a different schema, the query will not return it.

A third fundamental difference is that the set of available data in a peer network might
not be complete. Distributed and traditional systems contain a complete set of data in each
server cluster. However, a cluster of peers might not have the complete set of data required
to accurately and completely answer a query [16]. This is because a node containing some
information required by a query might be offline. Obviously, this query will not be able
to return proper and complete results because of missing information. This “missing data”
paradigm for peer database systems poses problems for query completeness and correctness.
The former completeness, is obvious. If data is offline it will not be found and a complete result
set will not be returned. The latter correctness, is somewhat more difficult to understand.

SELECT *
FROM Contacts
WHERE FName = ’John’ AND LName = ’Doe’

Figure 4: An Example Query

5

SELECT Count(DISTINCT Address)
FROM Customer

Figure 5: An Example Query

An incorrect result would be attributed to incomplete data providing a false result to a query.
For example, take the SQL statement in Figure 5. If a peer containing part of the Customer
table is offline, the user will not receive the correct number of distinct addresses.

A fourth fundamental difference is that queries in peer database systems must be routed to
many nodes. In distributed systems, a query can be routed to a relatively small set of nodes.
In a peer database system, the query must be passed to many nodes in order to return an
accurate result set [16]. This “query routing” paradigm for peer systems poses problems for
locating nodes, routing queries, retrieving results, and doing all this in an efficient manner1.
For example, a peer system may contain upwards of 10 000 nodes. It is not feasible for a
peer performing a query to store the IP address of each other node in the network. Further,
contacting each node individually to submit a query and receiving results from all 10 000
nodes does not scale well. Such a system would require mass amounts of space at each node
to store IP addresses, consume mass amounts of network bandwidth when submitting queries
and retrieving result sets, and experience a long response time.

1.2 Applications

Peer database systems have many different applications. One application of peer database
systems is to special interest communities. The internet holds many special interest groups
that share information, have meetings, etc. It would be advantageous for such groups to have
individual communities that could be used to share files, host chats, etc. [22]. This type
of system would distribute information across many nodes and require some sort of efficient
search mechanism to find data. A peer database system would be ideally suited for this
purpose: information would not have to be centrally located, and users would be able to find
information spread across multiple nodes with relative ease.

Finding contact information is another application of peer database systems. Frequently,
people do not have a phone number or an email address for a person or business they are
trying to contact. In such instances, a peer database system could be queried to retrieve
the required information. Each person could store their own vCard, and the vCards of those
people they know or have already searched for. Locating contact information would be fast
as users would not have to look through old emails or a hierarchy of web pages in order to
find the information they need. Also, caching would speed up subsequent queries by oneself
or others for the same data.

A third application of peer database systems is development environment configuration
management. When engineers work together to develop a piece of software, they must adhere
to standards in order to ensure that everyone working on the project can follow the code and
documentation. In programming environments, it can be particularly challenging to ensure

1efficiency in this context refers to low consumption of network resources.

6

that everyone uses the same conventions for variable naming, file structure, etc [7]. Due to the
scale of some projects, it might also be necessary to distribute templates, project documents,
etc. to many different people. Instead of sending this information via email, and in order to
ensure that each person working on the project has the most up-to-date information, a query
could be performed on a peer database system to allow each employee to download what they
require.

Transfer of patient records is another application of peer database systems. Hospitals
and doctor’s offices must share information about patients: their medical history, contact
information, etc. [16]. This sharing usually requires faxing or mailing large amounts of
information. This process can take days to accomplish. If, for example, a patient has been
taken to an emergency room because of complications resulting from surgery they had at a
hospital 1 000 kilometers away, it is imperative that information take minutes rather than days
to arrive. In these instances, it would be ideal to search hospital and doctor’s office databases
remotely to retrieve a patient’s information.

Another application of peer database systems is storing banking information. Customers
often hold accounts at one single bank branch. Such a branch services the client on a regular
basis, but records are often stored elsewhere on a central server. This results in the branch
needing to connect to the central server every time a transaction needs to be performed on the
client’s account. In this situation, a peer database system could speed up access to the client’s
records by distributing them across individual branches. Queries could then be performed over
all branches in order to find account information for a client who goes to a different branch,
an ATM, or another bank.

Another application of peer database systems is distributed file storage. Distributing office
documents across employee computers is usually done as a consequence of work style rather
than as a conscious decision. However, this distribution paradigm is actually quite efficient for
storage. Adding a simple searching mechanism would allow employees to access files stored on
each other’s computers without the need for a large file server, or for file requests to be made
by email, phone, etc. [22]. Of course, security protocols would be a required addition to such
a system.

Criminology is the final application of peer database systems that will be discussed here.
Law enforcement officials around the world keep DNA, fingerprints, criminal records, etc.
in nationwide central databases for easy access. This however, creates a bottleneck at the
server and the server becomes a single point of failure. As such, it would be advantageous
to distribute this data across multiple nodes. For example, the agency that collected the
evidence or arrested the individual could be responsible for holding records, updating them
as new information is discovered, etc. Using a peer database system, officials from around the
world would be able to search this information, and cache it for frequent use and to speed up
searching by other agencies.

1.3 Important Characteristics

There are several important characteristics that must be taken into account when designing
a peer database system [4, 5, 9, 13]

7

1.3.1 Scalability

Scalability refers to how well a system performs as the amount of load on it increases. A peer
database system must be able to handle an ever-increasing community of users [9]. If a system
performs adequately with 1 000 users, it should also perform adequately with 100 000 users.
As the size of the community increases, so does the consumption of network bandwidth, the
number of messages passed between peers, and the amount of information that a bootstrap
node or central server must keep track of. Ideally, a peer database system will be able to scale
in a less than linear fashion. Otherwise, an increase in size has the potential to choke the
network a user community runs on top of, and overload the bootstrap nodes or central server
attempting to hold the community together.

1.3.2 Availability

Nodes should be able to communicate with, and receive data from, each other. As well,
data should be replicated at, and retrievable from, several sources [5]. We therefore define
availability in the context of this paper to mean the ability to find and retrieve resources using
a peer system. The importance of availability should be obvious. If a peer database system
does not have a way to find or retrieve resources, it does not serve its purpose. In an ideal
system, if user A has a resource and user B caches that resource for later use, user C should
be able to obtain that resource from either user A or B.

1.3.3 Performance

The network should return results with the smallest latency possible. As well, communication
between nodes should be as efficient as possible [13]. Efficiency in the context of this paper
refers to a low consumption of bandwidth and as few messages being passed between nodes as
possible. Performance is critical to any peer system because users of such a system expect to
have fast access to resources. Also, the usefulness of a system often decreases as performance
degrades. As such, for a peer database system to remain useful, it must provide adequate
performance.

1.3.4 Data Authenticity

Data authenticity is concerned with determining whether or not responses to a query are
factual [5]. As such, a node should be able to tell the difference between a correct and an
incorrect query hit. For example, if a user is searching for contact information for John
Doe, how does the user know that the information returned is correct? Furthermore, if two
different sets of information are returned, both purporting to be for John Doe, how does the
user determine which set of information is correct? Ideally, a peer database system would
avoid returning incorrect results, or at least provide the user with a mechanism to aid in
determining which information is factual.

8

1.3.5 Security

A peer system must ensure that authorized users are the only ones who make use of privileged
data [4]. For example, in a system that shares patient records between doctor’s offices and
hospitals, only doctors, nurses, and their respective staff members should be able to access
private information. As well, information should be encrypted during transport and while in
storage to ensure that it cannot be stolen. In the context of this paper, we define security
to mean that only authenticated users with proper privileges can access privileged system
resources.

Two important aspects of security are:

1. Authentication of Users : User authentication is extremely important in order to facilitate
sharing of sensitive information across an organization without fear of that information
being used by those who are not privileged to see it.

2. Data Encryption: To prevent data from being stolen while in storage or transit, it should
be encrypted.

This paper will focus on authentication of users and data encryption in peer database
systems. Throughout this paper, the term security services will be used to mean user authen-
tication and data encryption2.

The rest of this paper is organized as follows. Section 2 provides an introduction to some
peer database systems and provides a critique of the security services offered by them. Section
3 provides an overview of Peer dATabase securiTY (PATTY), as well as an implementation
and evaluation proposal. Section 4 evaluates different proposed authentication protocols.
Section 5 evaluates different proposed data encryption protocols. Section 6 concludes with
some summary remarks.

2 Peer Database Systems

Several different peer database systems have been proposed in recent years [15, 16, 17, 19,
23, 26]. However, very little critical evaluation of such systems has been performed. In this
section, four recently proposed peer database systems are presented and the security services
they offer are evaluated.

2.1 Introducing APPOINT

APPOINT is an acronym for “Approach for Peer-to-Peer Offloading the INTernet.” [23] It is
a system that seeks to provide access to large amounts of spatial data in a fast and efficient
manner. Users may share or obtain entire spatial data sets over the internet using the Spatial
And Non-spatial Data (SAND) browser. SAND is a java-based browser that allows a user to
visualize different spatial data sets that are obtained from APPOINT. When users first contact
the central APPOINT server, they are asked whether or not they will share their files, extra

2The author recognizes these are only two components that make up a traditional set of security services
in most distributed environments

9

disk space and bandwidth in a peer manner. If so, clients can be called upon by the central
server to function as servers to other peers. If not, clients operate under the client-server
paradigm.

APPOINT is a central server system and functions under a traditional client-server paradigm
when system load is low. Users making requests to the system can download files directly from
the server. The central server keeps track of what data sets a user has downloaded, as well
as whether or not the user is online. When system load starts to increase, APPOINT defers
download requests for data sets to serving peers in an attempt to optimize performance. The
requesting user then downloads the file from a serving peer who has already cached it and
the performance of the central APPOINT server remains acceptable. However, all queries are
routed through the central server regardless of whether they will be deferred to serving peers.

Uploading data under APPOINT functions in a manner similar to downloading. When a
peer wishes to share a data set and central server load is low, the data set will be uploaded
to the central server and made available for download. If central server load is high, data sets
are uploaded to other serving peers and eventually propagated to the central server when its
load decreases.

Since APPOINT does not require any security mechanism (i.e. it is a freeware system), any
user may download any file. For the current free distribution of information that the system
is being used for, this does not pose a problem. However, should APPOINT be employed on
a network with sensitive or private data, it would require security measures to be built in. As
such, in environments that require security, APPOINT would not be able to deliver.

2.2 Introducing DBGlobe

DBGlobe is a knowledge management system that forms dynamic information “communities”
of nodes, also called “Primary Mobile Objects” (PMO’s), that store information of a common
type [19]. Information at a PMO is represented as a service. Thus, PMO’s may publish
several services of information to the bootstrap servers so that user agents may retrieve and
use them. PMO’s may also cache services that they make use of in order to publish them for
others. Conceptually, each node in the DBGlobe network contains a data store (the PMO)
that stores and provides access to information, and an application that registers information
with the bootstrap node and performs queries.

DBGlobe makes use of a number of “geographically” distributed Cell Administration
Servers (CAS)3. These bootstrap servers are responsible for publishing services to PMO’s
for retrieval and to other CAS’s to aid in query routing. A CAS also registers and holds
metadata for the PMO’s that fall within its assigned geographical area. CAS’s receive and
route all queries from PMO’s to appropriate PMO’s and CAS’s that should be able to provide
meaningful results. Since the CAS’s store metadata for each PMO, this query routing is easy.

As mentioned above, DBGlobe tracks information communities. This is done through the
use of Community Administration Servers (CoAS’s). A CoAS keeps track of each PMO that
contains information related to the theme of its assigned community. For example, a “history
community” may be assigned to CoAS2. As well as being tracked by its geographically defined

3It is unclear from the literature whether geographical area refers to physical location or network location
such as IP address or domain.

10

CAS, a PMO that stores historical information would also be tracked by CoAS2. When a PMO
is looking for information about historical events, its query can then be routed to CoAS2 to
receive faster and more accurate results. Conceptually, a CoAS is identical to a CAS except
that it tracks PMO’s in information communities instead of geographic regions. Communities
can be created statically by users, or dynamically by the CAS’s analysis of commonalities in
stored metadata.

DBGlobe makes use of filters to route queries to the appropriate neighbouring sites (i.e.
PMO’s, CAS’s, and CoAS’s) in a network. Each site maintains a “local” filter that sum-
marizes all the services it provides, as well as a set of “merged” filters that summarize the
services offered by its neighbours. Once a site receives a query (either from a PMO or from a
neighbour), the query can be routed to nodes containing relevant data for further processing.

As with APPOINT, DBGlobe does not provide any authentication or encryption mecha-
nisms to its users. As such, any user may make use of any piece of information in the system.
As with APPOINT, security measures would need to be added should DBGlobe be used in a
problem domain with sensitive data.

2.3 Introducing Edutella

Edutella makes use of a “super peer” organization strategy for connecting peers to each other
[26]. Nodes wishing to join the network are either defined as peers or super peers. Super peers
organize themselves into a hypercube topology with edge degrees defining a neighbouring
super peer as degree 0, 1, etc. Peers then connect, using a clustering algorithm, to the super
peer that will provide them with the best performance. Peers are organized in a star topology
around their super peer and route all queries to it.

Super peers maintain two types of indices: “Super Peer / Peer” (SP/P) and “Super Peer /
Super Peer” (SP/SP). The function of the two types of indices is the same: to hold metadata
about peers connected to the network in order to route queries to only those neighbours who
can provide results. The information stored in the two types of indices is what sets them apart.
SP/P indices hold metadata for each peer that is connected to a specific super peer. Thus,
each super peer has a different SP/P index. Queries arriving at a super peer are then routed
to its peers that have relevant data to contribute. Data can then be aggregated and returned
to the requesting peer through the connection of super peers. SP/SP indices hold metadata
for each peer cluster. So, each super peer would report to its neighbours what information its
peers hold. Metadata would propagate around the hypercube in a similar fashion to the way
routing information propagates in the distance vector routing algorithm: all SP/SP indices
would converge to a steady state over time. Each super peer would then know where to route
a query in order to get it to a peer that has appropriate results, using other super peers as
intermediaries.

Peers in the Edutella network route queries to their super peer who in turn forwards them
through the network according to an edge degree system. When a query request is routed, the
edge degree the message was forwarded on is included in the message. Then, when a super
peer receives a query request, it only routes it to those relevant super peer neighbours along
an edge with degree higher than the degree from which the query originated. This ensures
messages are not sent to the same peer or super peer twice.

11

In the Edutella network, peers may be clustered to super peers in three ways: using “on-
tology clustering”, “rule-based clustering”, or “query clustering”. With ontology clustering,
peers are assigned to clusters according to the data that they are “interested” in. For exam-
ple, all peers that are interested in holding or searching for DNA data would be clustered into
one group. With rule-based clustering, peers are clustered according to a certain set of rules.
For example, peers could be clustered according to domain, IP prefix, average response time,
average throughput, etc. With query clustering, peers are grouped according to the frequency
with which they have performed queries on certain types of data. For example, the number of
times they have searched for a person’s name, a product price, or a fingerprint. This requires
peers to store statistics about the type of information they search for.

As with DBGlobe and APPOINT, Edutella does not provide any means to secure data
on a network. Edutella’s current implementation aims to support the free distribution of
information, meaning that it does not require security services. However, employing Edutella
on a network requiring security services would mean Edutella would not provide a suitable
solution.

2.4 Introducing PeerDB

PeerDB is a robust data management solution that supports data sharing through agent based
communication with other peers [15, 16]. In a PeerDB network, each node has a database
management system, local and export dictionaries, and an agent. The database management
system is responsible for storing local data that the user has entered through the user interface.
It also stores cached results of queries that have been performed by the agents. The local
dictionary stores metadata and keyword descriptions for all locally stored data. The export
dictionary stores metadata and keyword descriptions for all shared data, and is searchable by
remote agents. Agents perform both local queries on the local dictionary and remote queries
on peers export dictionaries.

PeerDB is built on top of the BestPeer architecture [17]. Using BestPeer, peers are or-
ganized into a mesh based upon neighbour assignments from a Location Independent Global
Names Lookup (LIGLO) server. A peer initially contacts the LIGLO server and is assigned a
unique identifier and a set of neighbour peers to communicate directly with. LIGLO servers
store the IP address of the peer, its assigned neighbours, and its unique ID. In this manner,
the server can keep track of peer status. When a user logs in again, the LIGLO server knows
its new IP address and can assign it new neighbours. As queries are performed, peers make
remote nodes neighbours if they are found to be providing many useful query hits. This
self-reconfiguration of neighbours allows peers to communicate faster with those nodes that
are providing relevant results to its queries. This reduces response time for relevant results,
and allows the forming of information “meshes” similar in nature to Edutella and DBGlobe
communities.

When a user creates a database schema in PeerDB, they assign keywords to it to describe
the data they are storing [15, 16]. This schema is then searchable by keyword in order to
avoid the problems associated with the arbitrary schema paradigm discussed previously. In
order to perform queries on neighbour export dictionaries, peers make use of agents. Agents
are dispatched to each neighbour of a peer when a query is issued. The agents will query

12

the remote export dictionary by keyword and return any results to the user4. Each remote
query has a time-to-live counter associated with it. If the counter is not zero when it reaches
a neighbour, the counter is decremented and the agent is cloned and dispatched to all directly
connected peers of the neighbour. Replies to queries are returned directly by the agent to
the calling peer. Replies from the agents are then ranked for the user according to agent-
determined relevance. The user then selects the data they wish to have returned and the
agent fetches the full data set.

PeerDB provides some security for sensitive data by restricting what data may be searched
by remote agents. This is done by restricting remote agent queries to the export dictionary.
As with Edutella, DBGlobe and APPOINT, there is no mechanism to support searching of
sensitive data by authorized users, or data encryption. However, by allowing only certain
information to be exportable, PeerDB is one step closer to providing security services. As
such, PeerDB still has relatively poor security support, but its mechanisms are slightly better
than others.

It appears that much work still needs to be done in the area of security services. None
of the four solutions evaluated properly supports these very important functions. However,
PeerDB does come closest.

3 Meet PATTY

Peer dATabase securiTY (PATTY) is the main contribution of this paper. PATTY presents
a method of authentication, practices for data encryption, and a secure routing protocol.
PATTY combines techniques from current literature, and will be shown to provide robust
services and protection.

3.1 Design Goals

The design goals of PATTY are simple:

1. Authentication: PATTY seeks to provide a secure means of authentication of peers.
After authentication, access rights can be granted to data, allowing private data to be
shared in a peer manner.

2. Encryption: PATTY seeks to provide a secure means of communication and data storage.
Encryption will allow PATTY to ensure that private data remains private.

3. Low Overhead : PATTY seeks to provide its security services with as little overhead as
possible. Thus, performance of user queries should not suffer because of the need to
encrypt and decrypt data.

3.2 Influence from Current Literature

PATTY combines several approaches found in the presented literature [10, 11, 20, 26]:

4No data is actually returned at this point, only descriptions/keywords.

13

• RSA: The RSA [20] algorithm will be employed to encrypt all communications between
peers. RSA was chosen because of its strong encryption and the ease with which a key
can be revoked while still allowing the network to function.

• IDEA: IDEA [11] will be employed to keep all stored data safe. This method was chosen
because of the ease of encryption using current hardware and the additional security
provided over the traditional DES algorithm.

• Remote Authentication: As with remote authentication [10], PATTY nodes will be able
to specify remote users and groups for access control. Authentication will take place
using a modified version of the presented algorithm.

• Edutella: The peer organization structure of Edutella [26] is used by PATTY in order
to ensure that queries are routed securely. Since Edutella peers only route queries to
their super peer, the queries can be encrypted and passed securely to all other peers in
the network. Also, Edutella appears to provide efficiency using the edge routing system.
This reduces overhead, meeting design goal number 3 of PATTY.

3.3 Data Encryption Services

All data that is transferred between peers will be encrypted and decrypted using the RSA
algorithm [20]. All data that is stored on a peer’s disk is encrypted using the IDEA [11].
These algorithm have been proven secure, and are computationally inexpensive to perform
using existing hardware. Using these methods, we argue that our data will be secure, thus
meeting design goal number 2 of PATTY and satisfying part of the security requirements for
a peer database system.

3.4 Authentication Services

Authentication is performed in much the same way as the remote authentication method [10].
Peers submit authentication information with their query requests, and the receiving node
authenticates the requesting node based on its cached user and group records. Each node
can specify access rights to tuples, tables, stored procedures, etc. as is possible in any fully
functional database management system.

When a query request message is received, the receiving peer decrypts it and extracts the
authentication information. The authentication information is decrypted using the included
public key. The receiving peer then looks up the record for the user with the provided user
name. The password is verified, and the receiver ensures that the public key used to decrypt
the authentication information matches the public key stored in the user record. The IP
address provided is decrypted with the stored public key. If all of the checks and decryptions
are successful, the requesting node has been authenticated, and query processing can begin.

Super peers are outfitted as remote authentication servers. They may contain users and
groups, and these remote principals may be added to local groups of peers in the network. In
order to register themselves with the network, a peer may contact an administrator and create
an account out of hand. Individual peers will still reserve the right to grant or deny access

14

Query Statement The text of the query that the sender is attempting to
pose to peers in the network

Authentication Information The user name and password of the requesting peer, en-
crypted with the requesting peer’s private key

Public Key The public key of the requesting peer
IP Address The IP address of the requesting peer, encrypted with

the requesting peer’s private key

Figure 6: A query request message

to their data, meeting PATTY design goal number 1 and satisfying the remaining part of the
security requirements for a peer database system.

3.5 Query Routing

Queries are routed securely using a protocol similar to Edutella [26]. This section describes
the routing protocol used by PATTY.

• When a peer submits a query to its super peer, it is encrypted with the super peer’s
public key. The message can then be read only by the super peer when it is decrypted
using the super peer’s private key. A query message contains the elements in Figure
6. The included authentication information can be decrypted by anyone. However, to
authenticate, the information must first be encrypted with the requesting node’s private
key. Thus, even if a peer knows another’s user name and password, they cannot use it
to perform impersonation attacks. The requesting peer’s IP address is encrypted as well
to prevent redirection attacks.

• When the super peer determines where to forward the query next (i.e. to other peers
and/or super peers), it is encrypted with each new receiver’s public key and transmitted.

• When a peer receives a query, it decrypts the message. Authentication of the user is
then performed with the included authentication information. If the requesting node has
proper access priviledges, the query is run and a result set is obtained. To return query
results to the requesting node, the data is encrypted using the requesting node’s public
key. Thus, the results will only be viewable by the requesting node. The result is then
transmitted directly to the requesting node at the IP address included in the request.

3.6 Evaluation

This subsection outlines PATTY’s defense against some common attacks, describes the metrics
that will be used to measure the performance of PATTY, as well as the proposed implemen-
tation and experiments to be performed.

15

3.6.1 Attacks

PATTY may have to stand up to several types of attacks. Some of the most common are:

• Interception: PATTY is designed to be impervious to interception attacks with the use
of RSA encryption for communications. Since messages are encrypted with the receiver’s
public key, they can only be decrypted and read by the receiver (who holds the private
key).

• Impersonation: PATTY is impervious to impersonation attacks due to the robustness
of the authentication protocol. Any peer may decrypt and read a peer’s authentication
information using their private key. However, the public key associated with a user name
must be included in the query request message, the authentication information must be
decrypted using that public key, and the public key must match the one associated with
the user in the peer’s authentication database. Since it is not possible for a malicious
peer to encrypt the authentication information using the requesting peer’s private key,
authentication will fail if any of the information is tampered with.

• Wear and Tear : PATTY may suffer from wear and tear attacks on encryption keys.
This is directly due to the number of messages that will be encrypted using these keys.
However, the use of public-key cryptography reduces the number of messages that can
be collected and analyzed.

• Replay : PATTY can fall victim to replay attacks by malicious peers. Query request
messages can be resubmitted by a malicious peer. However, this type of attack is pos-
sible in traditional and distributed database systems as well. Further, although we are
concerned about it, we do not have any way to protect against it at the present time.

• Redirection: PATTY is impervious to redirection attacks by malicious peers. Since the
IP address of the requesting node is encrypted using their private key, the IP address
cannot be modified and still properly decrypt.

• Data Theft : Although it is possible to steal base table data from a PATTY node, the
data will not be readable as it is encrypted. However, if the encryption key is also
stolen, data would be readable by malicious peers. For this reason, PATTY nodes keep
the encryption key hidden on the host system.

• Denial of Service: It is possible to perform denial of service attacks in a PATTY network.
Many requests could be submitted to a super peer at once in order to refuse messages
from legitimate peers. No solution to this problem is presently known. However, since
there are many super peers in the network, the network will remain usable and connected
if a super peer fails.

3.6.2 Metrics

Several things need to be measured in order to evaluate the performance of PATTY:

16

Time (ms) Encryption ON Encryption OFF ∆
Minimum
Mean
Maximum

Table 1: Overhead comparison

Time (ms) Encryption Decryption
Minimum
Mean
Maximum

Table 2: Encryption overhead

1. Encryption Time: How long does it take to encrypt a query request or reply?

2. Decryption Time: How long does it take to decrypt a query request or reply?

3. Authentication Time: How long does it take to authenticate a peer once the authenti-
cation information has been decrypted?

4. Overhead : How much additional overhead is required (on top of “traditional” processing
time) to encrypt, decrypt and authenticate?

5. Data Access : How long does it take to encrypt and decrypt data in base tables?

3.6.3 Implementation Proposal

PATTY would ideally be implemented in Java in order to make it portable across platforms.
In addition, several experiments would be run in order to measure the performance of the
system:

1. Sample Queries : A batch of sample queries would be run on actual data. The queries
would be run with encryption turned on, then run again with encryption turned off. In
this manner, the overhead of the encryption services could be measured and recorded
in a table such as Table 1. Comparisons can then be made as to the amount of extra
overhead the encryption services impose.

Time (ms) Encryption Decryption
Minimum
Mean
Maximum

Table 3: Data access overhead

17

2. Encryption Test : A batch of queries and result sets would be encrypted and decrypted.
In this manner, it would be possible to measure the overhead of encrypting and decrypt-
ing query results and query request messages. Results would be recorded in a table such
as Table 2. The amount of overhead PATTY imposes on communication can then be
determined.

3. Access Test : A batch of accesses to data tables would be made and recorded. In this
manner, it would be possible to measure the overhead associated with decryption of
table data, and encryption of inserted data. Results would be recorded in a table such
as Table 3. The amount of overhead PATTY imposes on data accesses can then be
determined.

In this section, we have described a robust set of security services for peer database systems,
and how they can be implemented and tested. The following sections will discuss how PATTY
builds on many proposed security services.

4 Authentication Protocols

In this section, we take a critical look at some proposed authentication protocols for distributed
and peer systems [1, 2, 6, 10, 12, 14, 24, 25]. Other methods exist but are not presented here
as they bear significant similarity to the presented techniques.

4.1 Traditional Authentication

A method of authentication over the wire that involved encryption of user name and pass-
word elements with a shared secret key was proposed in [2]. In this manner, a node could
authenticate itself against a list of user names and passwords at the authenticating node.

This method is simple and secure. However, it requires that a secret key be distributed.
If this secret key is ever cracked or stolen, the entire system must shut down until a new key
can be generated and distributed to the member nodes. Also, each node must store user name
and password information for all nodes that are to have access to the data. PATTY uses
public-key cryptography to avoid the problem of key cracking.

4.2 Group-Based Authentication

Several methods of authenticating a node as a member of a group have been proposed [6, 12,
14, 25]. With these methods, once a node is a member of a group, it is trusted by the group
members and can send messages to them.

4.2.1 Troups

As mentioned in [6], a “Troup” is an acronym for a “Trust Group” in which each group
member implicitly trusts all other members. A peer is admitted to the group by authenticating
itself using a preselected exponent value, yi. The group controller keeps track of a one-way

18

accumulator value, z, and a peer’s auxiliary value, auxi. The requesting peer provides their
exponent and auxiliary values to the controller, who calculates the accumulator and what
the actual auxiliary value should be. If the accumulator and auxiliary values provided by
the peer are valid, it is admitted to the group. Exponent and auxiliary values are encrypted
using a secret key before being sent to the authenticating peer in order to ensure they are not
stolen. To add or remove a node from the network, the accumulator and auxiliary values are
recalculated to contain the new node’s exponent, or without the removed node’s exponent.
The new auxiliary values for each node are sent as encrypted messages.

Some important details detract from this algorithm’s usefulness. The encrypted values can
be stolen and used by a malicious party to authenticate themselves to the network. Since these
values are presented whenever a node makes a request, the malicious party can then submit
requests at will to the system. In addition, the group controller is a single point of failure
for the network, and vulnerable to denial of service attacks. Further, significant overhead is
required to add or remove a node from the network as values must constantly be recomputed.
PATTY does not fall victim to impersonation attacks due to the structure of its messages.
Also, no overhead is required to add a node to the set of active nodes.

4.2.2 Secret Shares

A second group authentication protocol was proposed in [14]. With this protocol, a group
is formed by a bootstrap node who assigns a secret key to the group, and a “secret share”
of data to each member. A node then makes an authentication request to the group using
the secret key and their secret share. The active group members vote to allow or deny the
requesting peer access to the group’s resources. Once a peer is admitted, they are given a
group membership certificate that they present each time they make a request. This certificate
is signed with the secret key of the group.

This algorithm appears to solve the single point of failure problem that we saw in the
Troup approach. However, as with Troups, access after authentication is based on the group
membership certificate which can be stolen by a malicious party. In addition, a large number
of messages need to be sent when voting to authenticate a member. This introduces an attack
vulnerability: a malicious party can continually submit authentication requests, slowing the
network significantly. PATTY does not require a large overhead to authenticate users, and
authentication requests cannot be used as an attack.

4.2.3 Secure Groups

In [12], Li et al propose a method of authentication to secure groups. This method relies on
a bootstrapping node to create a list of user names and passwords for nodes that may join a
group. Then, a node submits their user name and password encrypted with the public key
of the group controller. The group controller authenticates the node and it may then send
messages to group members.

This method avoids the theft of certificate problem we see with Troups and secret shares.
This is because operations to be performed are encrypted along with the authentication in-
formation. But, this introduces the possibility of replay attacks. Further, as with Troups, we
have a single point of failure and denial of service attack problem associated with the group

19

controller. In addition, since user names and passwords are used, the potential of password
cracking or theft of the user name/password lists exists. PATTY does not fall victim to
cracking due to the encryption required when sending authentication information.

4.2.4 Strong Secure Groups

Weimerskirch et al [25] presented a method (similar to Li et al) that double-hashed user
name and password values before storing them to prevent theft of authentication lists. In
this manner, a user name and password combination is hashed before being encrypted for
transport to the authenticating node. The values are hashed again at the authenticating node
before being compared to the values stored in the lists.

This double hashing ensures that password cracking is not possible, and stolen lists are
unusable. However, strong secure groups still do not solve the other problems associated with
secure groups.

Clearly, the problems associated with group-based authentication preclude it from widespread
use in peer database systems.

4.3 Certificate-Based Authentication

Some authentication methods using certificates have recently been proposed [1, 24]. Other
methods exist but are not presented here as they bear significant similarity to the presented
techniques.

4.3.1 Credential Certificates

In [24], a method of authentication using credential certificates is presented. With this method,
a node is given a certificate signed with the issuing site’s private key. The certificate contains
the user authentication information as well as permissions that the node has at a local site.
Then, to perform an operation at a site, a node submits the operation they wish to perform
as well as their credential certificate. The site then checks to see if the certificate issued is
legitimate, and performs the operation if the certificate contains sufficient privileges.

This method of authentication overcomes many of the problems associated with group-
based protocols. Credential certificates cannot be forged as they must be signed by a local
site’s private key. However, the entire encrypted certificate can still be stolen and presented
to perform operations. In addition, each node must store n − 1 certificates for a network
containing n nodes. Further, these certificates must be generated and distributed in some
manner. Thus, the scalability of this method is questionable. PATTY does not require the
overhead of certificate generation and distribution. Also, much less data must be stored at
the requesting peer for authentication to the receiving peer.

4.3.2 Signed Certificates

Adya et al [1] presented a method of signed certificates for authentication. Using this method,
a certificate authority generates a certificate containing a user name and password for a node.
The certificate authority then signs the certificate with their private key. A node presents the

20

certificate in order to authenticate. The certificate is presented each time a node performs an
operation. The public key of the certificate authority is published in order to allow peers to
decrypt the certificate.

Using this method, we see many of the advantages experienced with credential certificates.
As well, a peer must only store one certificate for use on the network. But, as with credential
certificates, signed certificates are vulnerable to theft. In addition, a certificate authority
is a single point of failure and prone to denial of service attacks. Further, if the keys of the
certificate authority need to be revoked for any reason, each certificate generated by it becomes
invalid and must be regenerated and redistributed. When revoking a key in PATTY, no data
needs to be regenerated.

Certificate-based methods come closer to satisfying the authentication requirements of a
peer database system. However, some additional work is required to solve the problems with
these methods before they can be used in practice.

4.4 Remote Authentication

In [10], Kaminsky et al proposed the use of access control lists and the caching of remote user
and group records stored on remote authentication servers. Using this method, each peer adds
remote groups and users to local access groups. Then, the local authentication server caches
the authentication information stored at the remote site. Periodically, the cached records
are compared to the records stored at the remote sites. The changes to each record are
propagated to the local servers. To authenticate, a user submits an encrypted authentication
request message to the local site. The site then decrypts the request and assigns credentials
to the connection that was established. Future requests over the same connection have the
same credentials.

This algorithm proposes the specification of remote groups and users to allow them access
to data at local sites. It avoids the single point of failure problem as well as denial of service
attacks. However, as with many of the other methods presented, it is still vulnerable to
theft and replay of the encrypted authentication request message. PATTY makes use of
certain aspects of the remote authentication method. Further encryption is used to prevent
impersonation attacks if authentication information is stolen.

5 Data Encryption Protocols

In this section, we take a critical look at some data encryption methods that have been
proposed [2, 3, 8, 11, 20, 21].

5.1 Data Encryption for Storage

Several methods have been proposed for encrypting data that is to be stored on disk. Three
of the most popular are presented here [3, 8, 11, 21].

21

5.1.1 Chaotic Maps

In [8], a method of encrypting data using 1-D chaotic maps is presented. Chaotic maps use
two different encryption functions with different bases and exponents to encrypt data. In this
manner, it is virtually impossible to break the cypertext apart to determine the bases and
exponents. In addition, the double-encryption prevents a malicious peer from using a wear
and tear attack to determine the values used.

This method of encryption requires the storage of several different values on the user’s
system, and is computationally expensive to perform on data strings of large size (such as
those of data tables in a database). Thus, chaotic maps are not ideally suited to encryption
for a peer database system as PATTY seeks to minimize the additional overhead imposed by
encryption.

5.1.2 Data Encryption Standard

As noted by [3, 21], the Data Encryption Standard (DES) is one of the oldest and most
popular encryption methods for storing data. Although DES can be used for data that is
to be communicated, it is typically applied to storage of encrypted data on disk. DES is a
secret key system with a key length of 56 bits. Sixteen rounds of encryption are performed in
which the left and right halves of a document are swapped and alternatively encrypted using
a transformation function with XOR operations.

DES is quite useful for encrypting data. However, many researchers believe that the key
length is insufficient to prevent current computers (with their increased computing power)
from breaking the key. Thus, many incarnations of DES have been proposed that attempt to
make it more secure by increasing the bit length. PATTY makes use of a DES variant with a
larger key for increased security.

5.1.3 International Data Encryption Algorithm

The International Data Encryption Algorithm (IDEA) [11] was proposed in order to extend
the life of DES. IDEA extends the key length of DES from 56 to 128 bits. Then, data is
encrypted by performing sixteen encryption rounds on 64-bit chunks of data. Encryption is
performed using a subset of 56 bits from the key, and the subset of bits can change during
each encryption round. Thus, breaking the cyphertext is nearly impossible.

IDEA provides quite strong encryption using a shared key of longer length than DES. The
authors hope that IDEA will remain unbreakable for many years as the pace of computing
power increases. IDEA has been designed using functions that are computationally inexpensive
using current hardware implementations. Thus, it is the method of data encryption employed
by PATTY.

5.2 Data Encryption for Communication

Several methods have been proposed for encrypting data that is to be transmitted to another
party. Two of the most popular are presented here [2, 20].

22

5.2.1 Shared-Key Encryption

In [2], Bird et al review several shared-key encryption techniques. In these techniques, the
same key is used for encryption and decryption of data. Thus, the key must be kept secret from
all non-members of a group. The difference between the reviewed algorithms is the method
in which keys are generated and distributed.

All shared key techniques have the same problems associated with them. First, shared keys
are subject to heavy wear and tear attacks. With these attacks, the key can be determined
if enough messages are intercepted and analyzed. As well, if the key is ever compromised, a
new key must be distributed to each node in the network before the network can continue
operation. Due to the high volume of traffic in peer database systems, this method is not
appropriate as malicious users will be able to collect a significant number of messages with
which to perform wear and tear attacks. PATTY does not need to be shut down if one key is
compromized. Update cycles will keep keys up to date as they are revoked and renewed.

5.2.2 Public-Key Encryption

In [20], perhaps the most famous of public-key encryption methods is presented: the Rivest,
Shamir, Adleman (RSA) algorithm. The RSA algorithm provides a public and private key pair
generation method. In public key systems, a node’s public key is published to allow anyone
to encrypt or decrypt data that is sent to it. A peer can encrypt data using their private key
and send it to other peers who can decrypt it using the sender’s public key. Conversely, peers
can encrypt data using a receiving node’s public key, and the receiving node can then decrypt
it using their private key.

Public key encryption systems are very secure. Since the key pair is unique to the node,
significantly fewer messages can be collected than with shared-key systems by a malicious peer
for use in a wear and tear attack. As well, revoking a public key does not stop the network
from functioning. Thus, public key encryption will be used in PATTY.

6 Conclusion

In this paper, we have presented a framework for Peer dATabase securiTY (PATTY). PATTY
provides authentication, data encryption, and secure routing of query request messages in
a peer database system. PATTY can withstand many common security threats, including
impersonation, interception and data theft. An implementation and some performance exper-
iments have been suggested. Unfortunately, due to time constraints, an actual implementation
could not be completed.

23

References

[1] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R.
Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger P. Wattenhofer. Far-
site: federated, available, and reliable storage for an incompletely trusted environment.
SIGOPS Oper. Syst. Rev., 36(SI):1–14, 2002.

[2] Ray Bird, Inder Gopal, Amir Herzberg, Phil Janson, Shay Kutten, Refik Molva, and
Moti Yung. The kryptoknight family of light-weight protocols for authentication and key
distribution. IEEE/ACM Trans. Netw., 3(1):31–41, 1995.

[3] C. Boyd. Modern data encryption. Electronics & Communication Engineering Journal,
5:0954–0695, 1993.

[4] M. Ciglaric and T. Vidmar. Management of peer-to-peer systems. Parallel and Distributed
Processing Symposium, 2003. Proceedings. International, pages 1530–2075, 2003.

[5] Neil Daswani, Hector Garcia-Molina, and Beverly Yang. Open problems in data-sharing
peer-to-peer systems. In Proceedings of the 9th International Conference on Database
Theory, pages 1–15. Springer-Verlag, 2002.

[6] S. Gokhale and P. Dasgupta. Distributed authentication for peer-to-peer networks. Ap-
plications and the Internet Workshops, 2003. Proceedings. 2003 Symposium on, 2003.

[7] Andre van der Hoek, Dennis Heimbigner, and Alexander L. Wolf. A generic, peer-to-
peer repository for distributed configuration management. In Proceedings of the 18th
international conference on Software engineering, pages 308–317, Berlin, Germany, 1996.
IEEE Computer Society.

[8] M. Jessa. Data encryption algorithms using one-dimensional chaotic maps. Circuits and
Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Sympo-
sium on, 1, 2000.

[9] M. Jovanov. Scalability issues in large peer-to-peer networks. Accessed October 17th,
2004 from http://www.ececs.uc.edu/ mjovanov/Research/paper.html.

[10] Michael Kaminsky, George Savvides, David Mazieres, and M. Frans Kaashoek. Decen-
tralized user authentication in a global file system. In Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 60–73. ACM Press, 2003.

[11] M.P. Leong, O.Y.H. Cheung, K.H. Tsoi, and P.H.W. Leong. A bit-serial implementation
of the international data encryption. Field-Programmable Custom Computing Machines,
2000 IEEE Symposium on, 2000.

[12] Zupeng Li, Yuguo Dong, Lei Zhuang, and Jianhua Huang. Implementation of secure peer
group in peer-to-peer network. Communication Technology Proceedings, 2003. ICCT
2003. International Conference on, 1, 2003.

24

[13] J. Liu, Q. Zhang, X. Zhang, and W. Zhu. gmeasure: a group-based network performance
measurement service for peer-to-peer applications. In Proceedings of the 2002 IEEE Global
Telecommunications Conference, volume 3, pages 2528–2532, 2002.

[14] M. Narasimha, G. Tsudik, and Yi Jeong Hyun. On the utility of distributed cryptography
in p2p and manets: the case of membership control. Network Protocols, 2003. Proceedings.
11th IEEE International Conference on, pages 1092–1648, 2003.

[15] W. Ng, B. Ooi, and K. Tan. Bestpeer: A self configurable peer-to-peer system. ICDE,
2002.

[16] W. S. Ng, B. C. Ooi, K. L. Tan, and A.Y. Zhou. Peerdb: A p2p-based system for
distributed data sharing. In Intl. Conf. on Data Engineering, 2003.

[17] Beng Chin Ooi, Yanfeng Shu, and Kian-Lee Tan. Relational data sharing in peer-based
data management systems. SIGMOD Rec., 32(3):59–64, 2003.

[18] M.T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall,
Englewood Cliffs, NJ, USA, 1991.

[19] Evaggelia Pitoura, Serge Abiteboul, Dieter Pfoser, George Samaras, and Michalis Vazir-
giannis. Dbglobe: a service-oriented p2p system for global computing. SIGMOD Rec.,
32(3):77–82, 2003.

[20] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 26(1):96–99, 1983.

[21] M.E. Smid and D.K. Branstad. Data encryption standard: past and future. Proceedings
of the IEEE, 76:0018–9219, 1988.

[22] H. Sunaga, M. Takemoto, and T. Nakata. Applications of an advanced peer-to-peer
platform. Peer-to-Peer Computing, 2003. (P2P 2003). Proceedings. Third International
Conference on, 2003.

[23] Egemen Tanin, Frantisek Brabec, and Hanan Samet. Remote access to large spatial
databases. In Proceedings of the tenth ACM international symposium on Advances in
geographic information systems, pages 5–10, McLean, Virginia, USA, 2002. ACM Press.

[24] Vijay Varadharajan. Security enhanced mobile agents. In Proceedings of the 7th ACM
conference on Computer and communications security, pages 200–209, Athens, Greece,
2000. ACM Press.

[25] Andre Weimerskirch and Dirk Westhoff. Identity certified authentication for ad-hoc net-
works. In Proceedings of the 1st ACM workshop on Security of ad hoc and sensor networks,
pages 33–40, Fairfax, Virginia, 2003. ACM Press.

[26] Nejdl Wolfgang, Siberski Wolf, and Sintek Michael. Design issues and challenges for rdf-
and schema-based peer-to-peer systems. SIGMOD Rec., 32(3):41–46, 2003.

25

