Benchmarking DBMS’s for Communication Cost Analysis

A Work Term Report Presentation

· Introduction

· What is a federated system?

· System for combining data from disparate data sources into one logical data source

· Composed of a set of remote data sources that are remote to the user and the federated database system (FDBS) that the user is connected to

· Travelocity

· Remote searches of airline databases

· Performs bookings, adds payment details, etc.

· Google Scholar

· Remote searches of ACM, IEEE, etc. databases

· Presents consolidated view of papers matching common search criteria

· Outline

· Introduction

· Organization

· How is data organized in such systems

· Optimization

· What challenges are there to optimization

· Global Cost Modeling

· What factors should be included in a global cost model

· Experiments

· The experiments that were run

· Experimental Procedure

· Some notes of interest on the experimental procedure

· How communication cost was extracted

· Results

· Interesting notes from the captured data

· Conclusion

· Some concluding remarks

· Future Work

· An outline of future research directions

· Organization

· Multidatabase Language Approach

· Extensions to SQL or another language allow explicit naming of remote sources and access to the data at them

· Pass-through Querying

· Queries are passed directly to a remote source without any parsing by the federated server

· Global Schema Approach

· A global schema is created as a translated view of the disparate local schemas and accessible to the user

· Model assumed for this presentation

· Organization

· Global schema approach

· Burden of integration is on global DBA

· Must setup translations and maintain the global schema

· Logical global schema

· A logical global schema is created and the user builds queries against this global schema

· The user may never know the data comes from a remote data source

· Functional compensation

· The FDBS can provide functional compensation for operations requested by the user that cannot be performed by the remote source

· Ranking is one example

· How do we rank data from a text file or from a table in mySQL?

· Possibly high maintenance

· As the remote source schema changes, the global schema and translations will need to be modified to keep them accurate and useful

· Organization

· Global Schema Approach

· Explain diagram

· Optimization

· Optimization challenges for the FDBS

· Remote site autonomy

· Remote DBA’s decide how to organize and maintain their sites and data. A schema cannot be modified to make naming conventions uniform. A fragmentation scheme cannot be changed to make data access faster

· Remote parameters

· We cannot always get cost model parameters from remote data sources

· We cannot always predict which access methods, etc. will be used by the remote source in executing the query

· Some sources do not generate these parameters at all

· Translation

· Queries submitted to remote sources may need to be rewritten to execute against the remote schema

· Returned data may need to be translated into the format of the FDBS

· Heterogeneous capabilities

· Not all sources are created equal!

· Some sites may not implement certain functions, requiring the FDBS to provide those functions itself

· Additional costs

· Some additional costs such as remote site optimization time, the cost of communication, etc. must be taken into account during optimization

· Some of these costs have been heavily researched, others have not.

· From the perspective of the remote source, the FDBS is just another application requesting data!

· Optimization

· Omni module in iAnywhere ASA

· Supports GS approach and pass-through querying (MDBL)

· Performance of global queries

· Presently, the performance of Omni queries is much slower than the performance of queries operating over data local to the ASA database

· The aim of this project was to determine what factors affect the cost of communication for global queries in an attempt to reduce this cost

· Global Cost Modeling

· Many factors must be taken into account

· Optimization Cost (OPT)

· The time it takes to optimize the query at the remote data source

· The time it takes to optimize the query globally at the FDBS

· Communication Cost (COMM)

· The time it takes to ship queries and result sets over the network

· Execution Cost (EXEC)

· The time it takes to execute the query at the remote source

· The time it takes to perform any functional compensation at the FDBS

· Sub-query/Method Call Costs (SM)

· The time it takes to perform any subqueries or method calls at the remote source or the FDBS

· Reformatting Costs (RF)

· The time it takes to reformat the query submitted or the results returned

· Big nasty equation for the total cost of a global query

· Our focus will be on the working cost model that separates communication cost from all other costs

· Global Cost Modeling

· Interest for this project is communication cost

· Communication cost is a function of many variables

· LS = Link Speed

· S = Source/DBMS

· DS = Data Size

· DT = Data Type

· PF = Prefetch Status

· PS = Packet Size

· R = Processor Speed

· Experiments

· Goal

· Determine if communication cost can be modeled using simple network applications

· Determine what factors affect communication cost

· Two sets of experiments

· Pure network benchmarking

· Application used the link as quickly as possible with as little overhead as possible

· Provided a yard stick to check the results from the DBMS benchmarking against

· Comparisons between pure network tests and DBMS tests will tell us if we can model communication cost by simply modeling communication between two simple network applications

· DBMS benchmarking

· Varied each factor mentioned previously, one at a time

· Used JDBC connections to the different DBMS’s to submit queries

· Times were recorded and communication cost was extracted

· Experimental Procedure

· Hot cache

· The queries were run against data that was in memory to avoid complicating our numbers with IO costs

· A cache heating query was executed prior to the test queries to ensure all the data was in memory

· 30 trials

· 30 trials were run to ensure that a statistically relevant sample was obtained

· Experimental error below 5%

· The statistical error was below 5%

· It was below 1% in most cases

· Parameters varied during both sets of experiments

· Semantics of prefetching for network benchmarking

· For network tests, prefetching off meant one request packet for each result packet; prefetching on meant one request for the entire data set

· Experimental Procedure

· Applications

· DBCreate

· Created the data sets in a DBMS independent manner for the experiments

· NetBench

· Performed the network benchmarking

· DBBench

· Performed the database benchmarking in a DBMS independent manner

· No code specific to any one DBMS other than that required to alter connection parameters such as prefetching

· ResultParse

· Transformed the result data generated by NetBench and DBBench into a more useful format for analysis

· Experimental Procedure

· Recall the working cost model

· Remember this is the model we are assuming for our analysis

· We need some way to remove the C_OTHER

· Used two types of queries

· Why these two specific queries were used will be clearer in a few slides

· SELECT *



ROW

· This query fetched the actual data stored in the row

· The number of columns fetched was varied to provide result rows of different length

· This query fetches 50 000 rows, each of the same length and containing columns of a uniform data type

· SELECT MAX(COLUMN)

MAX

· This query fetched the maximum value for one column in the table

· The column used was varied to correspond to the last column in the select list

· This query fetches 1 row

· Ensure no indexes were created

· This would mean that we do not have to scan through each table row and we couldn’t say for sure that we were removing all the overhead from the SELECT * quries

· Determining communication cost

· Communication cost can be isolated in many ways

· The simplest is to subtract the time taken to execute the ROW query from the time taken to execute the MAX query

· Experimental Procedure

· Recording query execution time

· We can define four points in time

· T1 is the start time of the ROW query

· T2 is the end time of the ROW query

· M1 is the start time of the MAX query

· M2 is the end time of the MAX query

· Then, the communication time can be modeled by subtracting the time points from each other in the manner shown in this equation

· Experimental Procedure

· Many ways to calculate

· Queries were chosen for their simplicity

· Similar overhead in both types of queries means that subtracting them will yield the communication cost

· Assumptions

· Hot cache

· Again, IO cost is not a factor in our timings, as it is highly variable

· Transfer of max() value negligible

· One row of integer data type

· Loop evaluation is negligible

· Evaluating the WHILE loop during the row fetches is negligible

· Results

· Results Table

· After running all the queries, we come out with a table like this

· Each parameter value is presented along with the summary of communication time

· DBMS (S)

· If we compare the results where parameters are kept constant for each DBMS, note that the packet size presented is the default packet size for each DBMS, we note that there is statistically significant difference between the mean per row fetch times for each system

· This shows that each DBMS is different and must be modeled separately, i.e. we cannot run tests against one DBMS and generalize the results to all DBMS’s

· Results

· Link Speed (LS)

· Link speed has a large impact on communication times, as expected

· DBMS’s saw a decrease in mean fetch time per row of 12 - 36 % when the network speed was increased from 10 to 100 Mbit

· What surprised me is that the increase was not nearly as great as the network benchmark increase of almost 50 %

· I expected that the DBMS’s would be able to take better advantage of a faster link but there could be several hardware and software reasons why this didn’t happen

· Results

· Link Speed (LS)

· A graphic analysis of the data showed that the slope of the graph of data size versus fetch time per row leveled off as data size increased

· This showed that, surprisingly to me, an increase in link speed has a greater effect on data sets of larger size

· Results

· Data Size (DS)

· Not surprisingly, the fetch time per row increases as data size increases

· The slope of the graph shows this

· Each system shows a different type of graph. Some systems are linear increases with data size while others are slightly logarithmic or exponential

· Results

· Data Type (DT)

· Compared each data type to the CHAR and VARCHAR data type of the same number of bytes

· Some variance by data type, however, the differences are very slight - on the order of 10 %

· Notable exceptions are the DATE, TIME and TIMESTAMP data types which are significantly slower to access than the others

· Results

· Prefetch Status (PF)

· As expected, prefetching made a huge difference in per row fetch times. Systems experienced a reduction in time of 75 - 87 %

· Again, the network benchmark was much more successful at hammering data out with a whopping 99 % reduction in times.

· This could, however, have something to do with the number of rows each system sends in one prefetched packet

· The systems were left to their default number of prefetched rows. For some systems, this meant 300 rows, for others, it meant the entire data set

· Results

· Packet Size (PS)

· Packet size appears to have had a negligible effect on per row fetch time

· The packet sizes were left to their defaults for the first test, then they were cut in half and the tests were rerun

· Thus, we see that doubling the packet size only reduces the fetch time per row by 1 - 2 %, and even increases it by 2.5 % in one case

· Results

· Server CPU Speed (CPU)

· Server speed had some effect on the per row fetch times. However, only a 6 - 11 % reduction was noted when moving the DBMS’s from a Pentium II-450 to a Pentium III-800.

· Again, not surprising, but I expected the difference to be greater especially because we were changing processor classes as well as speeds. Perhaps the limiting factor here is bus speed

· Results

· Other notes

· Dominant Factors

· Dominant factors seen were source, link speed, prefetch status and data size

· Evident in the large changes and variance in times

· Other factors did have some effect too

· Consistency

· The systems were relatively consistent in their times, meaning that the overhead associated with them is relatively consistent

· The average relative error for each test suite was below 1 % with only 30 trials!

· Efficiency of Link Usage

· Each system adds its own overhead to the communication process. This can be seen in the marked increase in fetch times over that of the network benchmark

· Conclusion

· Many factors need to be included in cost models

· There are potentially more than the ones that were just mentioned

· Others such as the amount of RAM, the OS, 

· Dominant Factors

· Source, prefetch status, link speed and data size

· Affecting Factors

· Data type, processor speed and packet size

· Communication cost is not a pure networking problem

· We cannot model communication cost using a simple network application

· This is evident in the increase in times of the DBMS’s over the network benchmark

· Something special happens inside the DBMS that must be modeled to make our cost estimates more accurate

· Conclusion

· Each DBMS is different in added overhead

· Systems are consistent in overhead

· Efficiency of link use could improve

· Ease of control of the factors

· Easily controllable

· Prefetching, data type and data size can be controlled

· Not easily controllable

· Link speed, CPU speed, source and packet size are all controlled by the remote DBA or others

· Thus, we cannot tune these factors, but we may be able to make good estimates of cost if we know them

· Much work still to be done!

· Future Work

· Collection of additional data

· Collect additional data for additional factors such as link utilization to model network load

· Generation and testing of a communication cost model

· Generate and test a cost model for communication

· Generation is relatively easy with the data tables already created

· Testing would involve rerunning the tests on different hardware and coming up with new tests to see how well the model handles parameters that were not used to construct it

· Gathering and analysis of other global cost model parameters

· I mentioned before that some of the other global cost model parameters had been researched before. However, there are still others to look at, and the models can always be improved

· Acknowledgements

· iAnywhere for their support

· Glenn and Ivan

· Support and countless questions

· Mike, Anil, Ani, Dan, Matthew

· Help and guidance

· Mark, Scott and Dave

· Hardware loans

· Karim, Graham and Ian

· Software help

· Frank

· Arranging the work term and help with the report and talk

· Want More?

· Check out the work term report at http://www.tonyyoung.ca/wtr.pdf

· Optimization

· Semijoin algorithm

· Site selection

· Remote reduction

· Global reduction

· Assembly

· Minimizes communication costs

· Exploits heterogeneous capabilities

· Optimization

· Replicate algorithm

· Site selection

· Data transfer

· Query execution

· Assembly

· Minimizes query response time

· Exploits varying hardware configurations

· Optimization

· Difference between semijoin and replicate

· Assumptions made

· Execution location

· Optimization

· Garlic

· Fire access STAR’s

· Fire join STAR’s

· Fire FinishRoot STAR

· Hybrid of semijoin and replicate algorithms

· Large amount of overhead

· Motivation

· Proliferation of heterogeneous DBMS’s

· Data sharing within organizations

· Differing rates of technology adoption

· Mergers and acquisitions

· Geographic separation of teams

· Want More?

· Check out the work term report at http://www.tonyyoung.ca/wtr.pdf

