
Benchmarking Database Management Systems for

Communication Cost Analysis

W Anthony Young - 20161423

wayoung@uwaterloo.ca

May 10, 2005

Abstract

Federated database systems are a useful tool for businesses and researchers around

the world. These systems allow data from multiple remote data sources to be logically

combined into one unified local data source. Using this system, queries that would

traditionally require query fragments to be submitted to multiple sites can be performed

by submitting one query to a central site. This central site can make use of data stored

at the different remote sources as though the central site were simply an application

requesting data.

These so-called global queries must be optimized, but many additional factors com-

bine to make global query optimization complicated. Beyond the problems of local query

optimization, additional costs, including the cost of communication, the cost of remote

site optimization, etc., must be factored into cost models. Currently, the performance of

1

global queries in iAnywhere Adaptive Server Anywhere is much worse than the perfor-

mance of local queries.

This paper presents some background material on federated database systems includ-

ing information regarding benchmarking performed at iAnywhere Solutions, Inc. during

a cooperative work term. A discussion of the results of this benchmarking as well as

some initial recommendations for improving the performance of global queries will be

presented. Some future work is also outlined.

Acknowledgements

This research was supported by iAnywhere Solutions, Inc., 445 Wes Graham Way, Waterloo,

ON, N2L 6R2. Special thanks are extended to Glenn Paulley and Ivan Bowman who answered

countless questions and provided support and guidance. Thanks to Mike Demko, Anil Goel,

Ani Nica, Dan Farrar and Matthew Young-Lai who provided additional support during the

eight month cooperative work term. Thanks are also due to Mark Culp, Scott Shepherd and

David Peynado for the use of their hardware during the experimental phases of this project.

Thanks to Karim Khamis, Graham Hurst and Ian McHardy who provided their help and

expertise when applications were not functioning as expected. Thanks to the rest of the

iAnywhere team for their efforts to make the cooperative work experience a memorable one.

Thanks are also due to Nathan Boersma for his editing and suggestions. Last but not least,

thanks to Frank Tompa at the University of Waterloo for his help in securing a cooperative

education placement and guidance in preparing this work term report.

2

Contents

1 Introduction 12

1.1 Motivation . 13

1.2 Organization . 14

1.2.1 Multidatabase Language Approach . 15

1.2.2 Global Schema Approach . 16

1.3 Introducing OmniConnect . 16

2 Global Query Optimization 18

2.1 The Need for Optimization . 18

2.2 Optimization Strategies . 20

2.2.1 Semijoin Optimization Algorithm . 20

2.2.2 Replicate Optimization Algorithm . 21

2.2.3 The Garlic Optimizer . 23

3 Inputs to a Global Cost Model 25

3.1 Factors Affecting Federated Query Execution 25

3.2 A Working Cost Model . 28

4 Developed Applications 30

4.1 DBCreate . 31

4.2 DBBench . 34

4.3 NetBench . 40

4.4 ResultParse . 45

3

5 Experimental Setup 49

5.1 Hardware Setup . 49

5.2 Software Setup . 50

5.3 Experimental Procedure . 51

5.3.1 Experiment 1 . 52

5.3.2 Experiment 2 . 52

6 Experimental Results 54

6.1 Results . 57

6.2 Other Notes . 61

6.2.1 Dominant Factors . 61

6.2.2 Consistency of the Systems . 62

6.2.3 Efficiency of Link Usage . 62

6.3 Recommendations . 64

7 Conclusion 65

8 Future Work 66

A NetBench Configurations 73

B Queries 74

C Schemas 89

D Graphs 103

4

D.1 Scatter Plots . 103

D.2 Bar Charts . 121

5

List of Figures

1 Example DBCreate Calls . 33

2 DBBench GUI . 34

3 Sample DBBench Command Line Executions 38

4 Sample Query Import File . 40

5 DBBench code instrumentation . 41

6 Recorder methods for starting and stopping time 42

7 Example NetBench Calls . 45

8 Example ResultParse Calls . 49

9 Simplified View of DBBench Query Instrumentation 55

10 Simplified View of Query Instrumentation for Actual Row Fetch and Column

Maximum Fetch . 56

11 Query 2 . 74

12 Query 3 . 75

13 Query 4 . 75

14 Query 5 . 76

15 Query 6 . 76

16 Query 7 . 77

17 Query 8 . 77

18 Query 9 . 78

19 Query 10 . 78

20 Query 12 . 79

6

21 Query 13 . 80

22 Query 14 . 80

23 Query 15 . 81

24 Query 16 . 81

25 Query 17 . 82

26 Query 18 . 82

27 Query 19 . 83

28 Query 20 . 83

29 Query 30 . 84

30 Query 31 . 85

31 Query 32 . 85

32 Query 33 . 86

33 Query 34 . 86

34 Query 35 . 87

35 Query 36 . 87

36 Query 37 . 88

37 Query 38 . 88

38 Schema for Table type char2 . 89

39 Schema for Table type char3 . 90

40 Schema for Table type char4 . 90

41 Schema for Table type char5 . 91

42 Schema for Table type char6 . 91

7

43 Schema for Table type char7 . 92

44 Schema for Table type char8 . 92

45 Schema for Table type char9 . 93

46 Schema for Table type char10 . 93

47 Schema for Table type date . 94

48 Schema for Table type decimal . 94

49 Schema for Table type double . 95

50 Schema for Table type float . 95

51 Schema for Table type int . 96

52 Schema for Table type real . 96

53 Schema for Table type smallint . 97

54 Schema for Table type time . 97

55 Schema for Table type timestamp . 98

56 Schema for Table type varchar2 . 98

57 Schema for Table type varchar3 . 99

58 Schema for Table type varchar4 . 99

59 Schema for Table type varchar5 . 100

60 Schema for Table type varchar6 . 100

61 Schema for Table type varchar7 . 101

62 Schema for Table type varchar8 . 101

63 Schema for Table type varchar9 . 102

64 Schema for Table type varchar10 . 102

8

65 NetBench Network Time with 10 and 100 Base-T links and a packet size of

1460 bytes. 104

66 System 1 Network Time with a 10 Base-T link and a packet size of 1460 bytes. 105

67 System 1 Network Time with a 100 Base-T link and a packet size of 1460 bytes. 106

68 System 1 Network Time with a 10 Base-T link and a packet size of 2920 bytes. 107

69 System 1 Network Time with a 100 Base-T link and a packet size of 2920 bytes. 108

70 System 2 Network Time with a 10 Base-T link and a packet size of 4096 bytes. 109

71 System 2 Network Time with a 100 Base-T link and a packet size of 4096 bytes. 110

72 System 2 Network Time with a 10 Base-T link and a packet size of 2048 bytes. 111

73 System 2 Network Time with a 100 Base-T link and a packet size of 2048 bytes. 112

74 System 3 Network Time with a 10 Base-T link and a packet size of 32767 bytes. 113

75 System 3 Network Time with a 100 Base-T link and a packet size of 32767 bytes.114

76 System 3 Network Time with a 10 Base-T link and a packet size of 16384 bytes. 115

77 System 3 Network Time with a 100 Base-T link and a packet size of 16384 bytes.116

78 System 4 Network Time with a 10 Base-T link and a packet size of 2048 bytes. 117

79 System 4 Network Time with a 100 Base-T link and a packet size of 2048 bytes. 118

80 System 4 Network Time with a 10 Base-T link and a packet size of 1024 bytes. 119

81 System 4 Network Time with a 100 Base-T link and a packet size of 1024 bytes. 120

82 System 1 Network Time with a 10 Base-T link and a packet size of 1460 bytes. 122

83 System 1 Network Time with a 100 Base-T link and a packet size of 1460 bytes. 123

84 System 1 Network Time with a 10 Base-T link and a packet size of 2920 bytes. 124

85 System 1 Network Time with a 100 Base-T link and a packet size of 2920 bytes. 125

9

86 System 2 Network Time with a 10 Base-T link and a packet size of 4096 bytes. 126

87 System 2 Network Time with a 100 Base-T link and a packet size of 4096 bytes. 127

88 System 2 Network Time with a 10 Base-T link and a packet size of 2048 bytes. 128

89 System 2 Network Time with a 100 Base-T link and a packet size of 2048 bytes. 129

90 System 3 Network Time with a 10 Base-T link and a packet size of 32767 bytes. 130

91 System 3 Network Time with a 100 Base-T link and a packet size of 32767 bytes.131

92 System 3 Network Time with a 10 Base-T link and a packet size of 16384 bytes. 132

93 System 3 Network Time with a 100 Base-T link and a packet size of 16384 bytes.133

94 System 4 Network Time with a 10 Base-T link and a packet size of 2048 bytes. 134

95 System 4 Network Time with a 100 Base-T link and a packet size of 2048 bytes. 135

96 System 4 Network Time with a 10 Base-T link and a packet size of 1024 bytes. 136

97 System 4 Network Time with a 100 Base-T link and a packet size of 1024 bytes. 137

10

List of Tables

1 Results from Experiment 0 . 28

2 ANSI Data Type for Generated Columns in Four Argument Mode 30

3 Machine Hardware Specification for Experiments 50

4 Hub Hardware Specification for Experiments 50

5 Software Specification for Experiments . 51

6 Packet Sizes for Experiment 2 . 53

7 Average Differences for Variables . 57

8 System 1 Data Ranges . 58

9 System 2 Data Ranges . 58

10 System 3 Data Ranges . 59

11 System 4 Data Ranges . 59

12 Average Relative Error for Fetch Times . 62

13 NetBench Data Ranges . 63

14 Average Increase in Fetch Time Over NetBench 63

15 NetBench Configurations . 73

11

1 Introduction

John is sitting at his desk at Credit Co. finishing a report regarding the Acme account. He

needs to provide Acme with a consolidated report regarding its various financial holdings.

Since John manages Acme’s financial investments, he has to locate all of the company’s hold-

ings around the world. John has a painstaking task ahead of him. He must contact each

firm that Credit Co. invests in and determine how much of Acme’s funds exist there. John,

however, has a powerful weapon: a federated database system. Through the federated system,

John can query all the firms that Credit Co. invests in around the world at once.

This paper presents some background information about federated (multi) database sys-

tems, including an analysis of some global query optimization strategies. Recommendations

for improving the optimization strategy used in iAnywhere Adaptive Server Anywhere (ASA)

will be given based on the results of some benchmarking experiments that were performed.

Throughout this document, federated database systems (FDBS’s) and multidatabase sys-

tems (MDBS’s) will be used to refer to the same concept: a system for integrating multiple

heterogeneous (remote) data sources into a global data source [26]. Such products combine

data from multiple database management systems (DBMS’s) and make it logically accessible

as if it resided on one central system. This allows John to simultaneously see Acme’s holdings

at each firm around the world. John may believe he is looking at a single database, but is

in fact looking at many consolidated databases; giving a global view of multiple remote data

fragments.

12

1.1 Motivation

A FDBS is a powerful tool. As noted in [8, 11, 12], several factors motivated the development

of federated database systems.

• Proliferation of Heterogeneous DBMS’s Within an Organization: It is not uncommon

for different departments within an organization to have their own database servers.

Departments may not coordinate to ensure that a corporation is using a homogeneous

DBMS to store data. There is also no guarantee that the schemas individual departments

use to store data will be homogeneous.

• Data Sharing Within Organizations: Many organizations seek to share data between

departments. For example, the finance department may require information regarding

projects in progress in the marketing department. Such information sharing is difficult

without the guarantee of schema, model or language homogeneity.

• Differing Rates of Technology Adoption: Different departments will adopt technology at

different paces. The information technology department is usually tech savvy. They will

typically adopt new technology rapidly, while the human resources department often

lags behind. Human resources may adopt technology slower as they use numerous paper

forms that are hard to replace efficiently with electronic counterparts. Further, systems

that are deployed at different times might come from the vender that is considered the

“market leader” at the time of purchase.

• Mergers and Acquisitions: When companies join forces, their information systems must

be linked. Applications used by individual business units will depend on old (pre-

13

merger/pre-acquisition) systems. Users may be reluctant to learn an entirely new system.

With a FDBS, the systems can be merged logically. Users are still able to use their old

applications and access languages. The merged systems can be viewed as one when this

is required by a new application.

• Geographic Separation of Teams: Development teams may be broken up across geo-

graphic locations. A company may have engineering teams located in Ontario and Cal-

ifornia. Each site will host teams working on different projects, and may have its own

information technology staff that makes its own purchasing and installation decisions.

Often, there is no coordination between the information technology departments across

sites. There are, however, situations when databases need to be queried across sites.

Human resources may need to know what projects each employee works on regardless

of their site location.

A FDBS is clearly a very useful tool for global businesses and researchers.

1.2 Organization

It is important for the reader to understand how data is organized and accessed in a federated

system. This will help to illustrate how queries can benefit from optimization.

As seen in [19, 30], there are two main approaches to organizing data in a federated data-

base system. The multidatabase language approach makes use of a specialized multidatabase

language to submit and optimize queries. Thus the burden of integration is left to the sys-

tem users and the remote database administrators. The global schema approach makes use

of a global database schema composed of a consolidated view of translated remote database

14

schemas. Thus integration falls to a global database administrator who defines the global

schema and data transformations to be applied. Other approaches, including pass-through

querying [25], etc., will not be discussed here.

1.2.1 Multidatabase Language Approach

The multidatabase language approach uses a specialized query language to submit and opti-

mize global queries [6]. The burden of integration is left to the system users and, to a lesser

extent, the remote database administrators. Remote database administrators must provide

schemas and semantic information about the data stored at their sites. Users must then

formulate their queries to explicitly access data from remote sources. With a multidatabase

language, users have much more control over the data they are querying. The heterogeneity

of remote DBMS’s can be exploited to allow functional compensation for language features

implemented by one system that are not implemented by another. For example, some systems

may not implement ranking; but, data can be gathered and ranked at a site that implements

ranking before being returned to the user.

Since no global schema or translations need to be created, there is no need for a global

database administrator. Once the system is set up it can run without significant maintenance.

The multidatabase language approach requires users to know a significant amount of infor-

mation about remote DBMS’s and the data they hold. Users must know the structure and

semantics of each remote schema in the federated system in order to make use of it. Explicit

use of remote sites is required when writing a query. This is because there is no global schema

created that the user may form queries against. Queries must be formed against the many

15

remote site schemas directly. Users are also required to learn the multidatabase language or

language extensions.

1.2.2 Global Schema Approach

The global schema approach makes use of a global database schema composed of a combined

and translated view of remote database schemas [3]. Thus integration falls to a global database

administrator who defines the global schema and data transformations/translations to be

applied when submitting a query to remote sites (note that remote site administrators may

also need to define some translations on data leaving their sites). With this approach, users

see a unified view of all federated data, and do not need to know how data is represented

at the sites they are accessing. The database administrator combines the remote schemas

into a single global one and generates the translation rules between global and remote column

names, relation names and data formats. Functional compensation can also be provided by

the FDBS.

Although a global database administrator is required for this approach, the burden of

integration is lifted from the user (i.e. users do not need to know semantic information about

data at a remote data source). Unlike multidatabase language systems, a global schema needs

maintenance over time as sites, databases, relations and columns are added or updated.

1.3 Introducing OmniConnect

ASA contains a module named OmniConnect (Omni). Omni allows remote data access to

data sources external to the server with the use of proxy tables [25]. Using Omni, ASA can

16

act as a FDBS capable of providing functional compensation with data that is accessed from

a remote data source.

Once the ASA database administrator has set up proxy tables, users may access remote

data as if it were stored in ASA: following the global schema model. Omni also supports pass-

through queries that allow a user to send a query directly to a remote site without any parsing

or execution by ASA. The use of some SQL extensions is required for this feature: following the

multidatabase language model. Omni can be viewed as a hybrid global schema-multidatabase

language approach to federation.

Presently, performance of Omni queries is much slower than performance of queries that

access data stored exclusively in a local ASA database [25]. The aim of this project is to

increase the performance of Omni queries through changes to the current global optimization

strategy.

The remainder of this paper is organized as follows: section 2 introduces some basic con-

cepts and methods of performing global query optimization. Section 3 discusses various factors

that can affect global query optimization and presents a working cost model. An outline of

the four applications developed to complete this project is presented in section 4. Section 5

discusses the experimental setup and procedures used to gather data useful for making rec-

ommendations to improve the current global optimization strategy. Section 6 presents the

results of the outlined experiments. Section 7 provides some summary remarks and section 8

discusses some further avenues for research.

17

2 Global Query Optimization

2.1 The Need for Optimization

As with a local query1, optimization of a global query2 is important to ensure that response

time for it is minimized. This allows a user to be as productive as possible. Due to the decrease

in performance experienced by global queries (over local queries), global optimization can be of

even greater importance. There are several factors that combine to make global optimization

complicated [5, 15, 16, 30, 31].

• Remote Site Autonomy: There are several types of autonomy:

1. Data Autonomy - Remote database administrators have direct and absolute control

over the schemas, data types, relationships, etc. at remote sites. This information

cannot be modified in any way to make it more convenient for consolidation.

2. Design Autonomy - Remote database administrators decide when and how to repli-

cate and fragment data.

3. Communication Autonomy - Each site decides whether or not to communicate with

other sites in the federation and the FDBS.

4. Execution Autonomy - Each site can determine how, when and whether to execute

global queries, including query prioritization.

1A query operating over data that resides on (is local to) the system to which the query was submitted
2A query operating over data that may be local to the system to which the query was submitted, but that

may also reside at remote data sources

18

• Remote Parameters: Remote cost parameters for remote data sources are not always

available to the FDBS. For example, the FDBS may not know what indices are available

for relations at remote sources (nor can they predict which access methods will be used

to execute a given query, etc.) as catalog and statistic data is not always accessible by

the federation; and some data sources do not generate or export a catalog at all.

• Translation: Queries must be translated on-the-fly to and from the remote data source’s

schema, query language, and data model. This requires additional query processing

time; as translations built and maintained by a database administrator must be used.

• Heterogeneous Capabilities: Not all remote data sources have the same capabilities. As

a consequence intermediate results might have to be shifted to sites that can provide

functional compensation, lengthening processing time.

• Additional Costs: Cost-based optimization of global queries needs to take into consider-

ation additional factors including transmission speeds, network loads, and remote source

configurations. As with remote parameters, this information is not always available to

the FDBS.

Overall, one cannot assume any control over or even the existence of cost parameters for

a remote data source. As far as the remote data sources are concerned, the FDBS is simply

another application requesting data.

19

2.2 Optimization Strategies

Many query optimization techniques for FDBS’s have been proposed in the literature [2, 3,

4, 7, 9, 10, 14, 21, 27, 29, 30, 31, 32]. This section provides an overview of some of these

algorithms.

2.2.1 Semijoin Optimization Algorithm

The semijoin algorithm was proposed by Brill et al [3] and assumes that the cost of data

transfer through a network outweighs remote site CPU overhead. This algorithm seeks to

reduce the size of relations required for a query at local sites before transferring data back to

the FDBS for query execution. It consists of four steps:

1. Site Selection - A set of sites that will be used to perform a query is first chosen. This

requires finding a set of minimal size that includes one copy of each local, remote,

partitioned and replicated relation (i.e. each site holding a data fragment must be in

the set, but only one replica of a relation must be in the set). Some sites may hold more

than one relation required by the query, further reducing the size of the site set.

2. Remote Reduction - Simultaneously at each remote site in the chosen site set, each

relation is reduced by performing selections and projections. Parameters used to perform

these operations are taken from SELECT, WHERE and JOIN conditions in the original

query. It might be possible to optimize the order in which site reduction queries are

performed by exploiting network traffic and speed, CPU load at remote sites, etc. (i.e.

submit queries over slow links or to slow sites first in an attempt to minimize their

impact on overall execution time).

20

3. Global Reduction - The FDBS finds and executes an efficient sequence of semijoins that

will reduce the set of records to be transmitted. The original proposal utilizes a hill-

climbing algorithm to determine this set. Once the semijoins are performed, the smallest

amount of data required to answer the query is ready for transport.

4. Assembly - The data is next transferred to one central site and the result set is generated.

The result set is then returned to the user. It may be less costly to generate the result

set at one central site and then transfer the data back to the user. It may also be less

costly to assemble the result set at the user’s site.

This algorithm exploits the capabilities of the DBMS’s in the federation through functional

compensation in the remote and global reduction, and assembly phases. Reduction also at-

tempts to minimize the transmission overhead required to send data between sites. The reader

must keep in mind that this algorithm relies on an assumption that communication cost is the

dominating cost parameter, which may not be valid.

2.2.2 Replicate Optimization Algorithm

The replicate algorithm was also proposed by Brill et al [3] but assumes that CPU overhead

at remote sites outweighs communication costs between them. Therefore, this algorithm seeks

to transfer data between remote sites in order to exploit the differences in processing speeds

of each system. It consists of four steps:

1. Site Selection - As with the semijoin algorithm, a minimal site set is chosen. However,

instead of choosing only one replica for each relation, we include all replicas of the data.

This allows us to run queries in parallel at each replica.

21

2. Data Transfer - Each relation is copied to each site where it is to be used to process a

subquery, but does not already exist (i.e. if site 1 holds relation A and requires relation

B, B is transferred to site 1). This may require composing fragmented relations into one

large relation. After this step, each site should have a copy of the relations that are to

be used to form the partial query result for which that site is responsible (as per the

subquery sent to it by the FDBS).

3. Query Execution - Once each site has the data it needs to run its partial query, the

queries are executed. Once this step is complete, each site should have a partial answer

to the user’s query.

4. Assembly - Finally, the partial answers are transferred from the remote sites and the

final result set is created at the user’s home site. The results are then returned to the

user.

This algorithm exploits the varying hardware configurations of the DBMS’s in the feder-

ation. An attempt is made to reduce response time to a query by performing it in parallel

at different sites. The reader must keep in mind that this algorithm relies on the assumption

that execution overhead outweighs communication costs, which may not be valid.

The two main differences between the semijoin and replicate algorithms are:

1. Assumptions: depending on which assumptions are valid at execution time, either algo-

rithm could be used.

2. Execution Location: replicate queries are executed at remote sites in parallel while semi-

join queries are executed at the FDBS (or another central site) once all the required

22

data has been reduced.

2.2.3 The Garlic Optimizer

The Garlic optimizer uses wrappers to gather cost information used for developing a query

plan [7, 9, 10, 14, 21]. Wrappers communicate query fragments (pieces of the original query

that are dispatched to remote data sources) to the remote sites and provide costs for those

fragments to the optimizer. The goal is to allow Garlic to find a good plan without knowledge

of the capabilities of the remote sources (i.e. the wrappers must ascertain the capabilities of

the sites and provide a good cost estimate for any given query fragment). The Garlic optimizer

uses a set of strategy alternative rules (STAR’s) to generate and rewrite query plans. Plans

consist of a set of plan operators (POP’s) that comprise the query plan tree (i.e. sort, filter,

scan, etc). A generic “pushdown” POP that encapsulates work to be done at a remote site

(i.e. table scans, etc) is also included.

STAR’s are “fired” over the query string to generate POP’s and can be seen as gram-

matical production rules. STAR’s generate cost and cardinality information using input from

wrappers. The Garlic optimizer works in three phases:

1. Fire Access STAR’s - “Access” STAR’s are applied to enumerate plans that read data

from a source. The plan space is then pruned in order to remove plans that have the

same or weaker cost properties (i.e. remove plans of higher cost that will not provide

some interesting order to future joins, etc.).

2. Fire Join STAR’s - “Join” STAR’s are applied to enumerate all plans involving joins.

The plan space is then filled with all possible join orders: Garlic considers bushy plans

23

and left-deep plans. Bushy plans are considered because collocated data may make a

bushy plan more efficient (i.e. a join could be performed cheaply at a remote source

instead of sending the data back to the FDBS for joining). The plan space is then

pruned in order to remove plans with equal or weaker cost properties.

3. Fire FinishRoot STAR - The “FinishRoot” STAR is applied to provide orderings, selects,

projects, etc. that were not already completed by a remote site (i.e. the site did not

have the proper capabilities or sufficient data to perform the operation). The plan with

the lowest cost is chosen for execution.

Literature [10] has shown that this algorithm is able to produce plans of near-optimal

cost. The Garlic optimizer can be seen as a hybrid semijoin-replicate algorithm as it attempts

to reduce communication cost and exploit varying hardware capabilities throughout its three

phases. As with the semijoin algorithm, an attempt has been made to reduce communication

costs using the Access STAR’s and pushdown POP. The analysis of bushy plans also allows the

exploitation of varying hardware configurations as is attempted with the replicate algorithm.

This optimization strategy has a large amount of overhead, making it difficult to justify for

simple queries.

Numerous other global optimization algorithms have been proposed [2, 4, 27, 29, 30, 31, 32]

but will not be discussed here. The three algorithms presented were developed specifically for

federated query optimization, while the additional algorithms referenced are extensions to

existing optimization strategies. As such, the three presented algorithms were thought to be

the most interesting.

24

3 Inputs to a Global Cost Model

There are many factors that can affect optimization of global queries in a federation. This

section provides an overview of some of the most pertinent of those factors. A critical evalua-

tion of communication cost will be made, and a simplified cost model will be proposed to test

assumptions made by the various algorithms.

3.1 Factors Affecting Federated Query Execution

Cost = COPT + CCOMM + CEXEC + CSM + CRF (1)

Equation (1) presents a high-level global cost model. The various parameters of this cost

model are discussed below:

1. Cost of optimization =

COPT = OE + OR + OH + OC (2)

Equation (2) presents some of the factors affecting the cost of optimization of a query.

Optimization cost will appear at the FDBS as well as each remote DBMS. Optimization

cost is affected by several factors including query rewrite, OR, plan enumeration and

pruning, OE, application of heuristics, OH , and cost-based optimization, OC . Since it

is simply another application to the remote data sources, the FDBS cannot exert any

control over remote site optimization times. The FDBS can, however, control how much

time is spent globally optimizing queries (i.e. deciding on join strategies, performing site

selections, etc.) using an optimizer govenor [25] or stopping condition [24]. A governor

allows an optimizer to uniformly sample plans in the plan space by limiting the amount

25

of time spent evaluating each individual subspace. Limiting the evaluation time ensures

sampling of a query space does not limit the exploration of plans to one specific subspace.

The intention is to provide a more optimal solution by visiting each subspace. Stopping

conditions can be imposed to halt optimizaiton once a set amount of time has been spent

on some operation or portion of optimization.

2. Cost of communication =

CCOMM = CLS ∗ a + CS ∗ b + CDS ∗ c + CT ∗ d + CPF ∗ e + CPS ∗ f + CR ∗ g (3)

Equation (3) presents some of the factors affecting the cost of communication of a query.

Appearing many times during the execution of a global query, this cost must be ac-

counted for during all data transfers between sites or to the FDBS. Communication cost

is affected by several factors including link speed, CLS, data size, CS, data source, CDS,

data type, CT , prefetch status (‘on’ or ‘off’), CPF , packet size, CPS, and processor speed,

CR. The variables a−f allow us to model that each factor has some affect on the overall

communication cost.

3. Cost to reformat data =

CRF = RT + RW (4)

Equation (4) presents some of the factors affecting the cost of reformatting data used by

a query. This cost will appear once for each remote data source that is accessed during a

global query. Reformatting cost is affected by several factors including the time needed

to perform data translations, RT , and the time, RW , to transform a query from the

26

global data language/model/schema into the data language/model/schema of a remote

data source.

4. Cost of subqueries and method calls =

CSM =
∑

s∈S

Cost(s) +
∑

m∈M

ME(m) (5)

Equation (5) presents some of the factors affecting the cost of performing subqueries

and method calls that are part of the global query. Subquery statements are available

to the global optimizer. Estimation of the time it will take to execute each subquery, s,

in the set of subqueries, S, is simply a recursive call to the global cost function. Since

the query statement for method (or stored procedure) calls is often not available to the

global optimizer, it can be difficult to estimate the time it will take, ME(m), to execute

each method call, m, in the set of method calls, M . As demonstrated by Adali et al [1],

ME can be empirically determined using feedback from query execution. Lookup tables

could be used to allow an optimizer quick access to the previous execution times for a

given method, m.

5. Cost of query execution =

CEXEC = ER + EJ + EF + ES + ED + EA + EI (6)

Equation (6) presents some of the factors that affect the cost of executing a query. This

cost will appear for each query fragment, including once for any functional compensation

provided by the FDBS. Methods of estimating the cost of data accesses, ER, sorts, ES,

joins, EJ , etc. have been discussed in the literature [20, 22, 23]. Unfortunately, it is often

27

System Query Location Response Time
(seconds)

System 1 SELECT * FROM CUSTOMER Shared Memory 9.20
SELECT * FROM CUSTOMER Ethernet Network 19.41

System 2 SELECT * FROM CUSTOMER Shared Memory 4.69
SELECT * FROM CUSTOMER Ethernet Network 21.51

System 3 SELECT * FROM CUSTOMER Shared Memory 8.67
SELECT * FROM CUSTOMER Ethernet Network 17.35

System 4 SELECT * FROM CUSTOMER Shared Memory 14.93
SELECT * FROM CUSTOMER Ethernet Network 30.82

Table 1: Results from Experiment 0

difficult to determine the access, sort and join methods a DBMS will use; making accurate

calculation nearly impossible. Calculated or hard-coded costs for performing operations

such as filtering tuples, EF , eliminating duplicates, ED, performing aggregation, EA,

creating indexes, EI , etc. will be system specific and unavailable to the global optimizer.

As a result, it may be useful to obtain an estimate of query fragment execution cost from

the remote data sources directly. This, however, might not always be possible as ODBC

data sources such as text files cannot provide cost estimates. Also, many DBMS’s may

provide cost estimates in “cost units” that require conversion into time units. If this

conversion factor is unknown or unrelated to physical time, the estimate is useless.

3.2 A Working Cost Model

As can be seen above, many factors can have an effect on the execution time of a global

query. Many researchers claim that in the majority of cases, communication costs dominate

all other costs [13, 19, 28]. Some of the optimization algorithms presented above rely on

assumptions regarding communication costs. A quick experiment (experiment 0) will show

28

that communication cost outweighs processing costs in the simple case. Table 1 presents the

results of a fetch test run to determine how long it takes to fetch all rows from a DBMS and

transfer them to odbcfet.exe [25] using shared memory or a wired network. The odbcfet.exe

utility times how long it takes to fetch data from an ODBC data source. The utility was used in

this experiment because it has a very small memory footprint, thus reducing the performance

impact to the DBMS when both the utility and DBMS are running on the same machine.

This is important to minimize the impact in performance on the DBMS, allowing us to more

accurately measure the fetch times of queries in a shared memory environment. As table 1

shows, the time required to complete a query over a wired network is very large compared to

the time taken to complete the query over shared memory. Thus, reducing communication cost

appears to have a significant impact on query response time, warranting further investigation

into the factors affecting it. The queries were run using a hot server cache to ensure that hard

disk I/O was not performed. If disk I/O were performed, our measurements would not allow

us to compare pure network performance as other factors would be included in the recorded

times.

Cost = COTHER + CCOMM (7)

COTHER = COPT + CEXEC + CSM + CRF (8)

The aim of the rest of this project is to determine what factors most affect the cost of

communication. A simplified cost model is used to do so. This model allows the separation

of communication cost from all other costs involved in query execution (allowing the study of

29

Field Number ANSI Type Field Number ANSI Type

1 char(10) 9 real
2 char(50) 10 smallint
3 char(100) 11 time
4 date 12 timestamp
5 decimal 13 varchar(10)
6 double 14 varchar(50)
7 float 15 varchar(100)
8 int

Table 2: ANSI Data Type for Generated Columns in Four Argument Mode

communication cost to be separated from the study of other costs). The cost model presented

in equation (1) is simplified into the working cost model shown in equation (7) with the

component COTHER provided in equation (8). Section 6 will discuss this model in more detail.

4 Developed Applications

Before a discussion of the experiments performed can be given, some applications must be

introduced. These applications will allow us to perform our experiments and format our re-

sults. This section contains a discussion of the four applications developed: DBCreate, a table

generation tool developed to build data sets for use during the experiments outlined in section

5; DBBench, a benchmarking tool developed to perform the DBMS benchmarking experi-

ments oulined in section 5; NetBench, a network benchmarking tool developed to perform the

network experiments outlined in section 5; and ResultParse, a tool used to parse and organize

the data sets obtained by DBBench and NetBench, and used for analysis in section 6.

30

4.1 DBCreate

DBCreate is a Java utility developed to generate the TYPE TABLE table data required for

the experiments presented in section 5. This utility was developed with the following goals in

mind:

1. Generate random data of a specific data type that can be imported into each of the four

systems supported by DBBench (see below). Random data is necessary to ensure that

data bias is not introduced.

2. Provide a means to generate data of uniform type or data of varying type, depending

on the requirements of the experiment the data is to be used for.

Since no utility could be found that would generate data with the specific requirement of

complete randomness and without generation in the format of a specific DBMS, the decision

was made to develop one from scratch.

The DBCreate utility operates in two modes. The four argument mode generates a table

containing 15 data columns of differing data type. Table 2 lists the ANSI SQL data type

the individual columns contain. The seven argument mode generates a table with a specified

number of rows each containing a specified number of columns of uniform data type. As

data is imported into the various systems, it is transformed to conform to each system’s

implementation of each ANSI type.

DBCreate can be invoked from the command line and requires the specification of either

the four mandatory arguments, or the four mandatory and three additional arguments (i.e.

either four or seven argument mode):

31

1. FIELD DELIMITER: The delimiter used to separate field values in the file. Do not use

a letter or number here. A pipe, ‘|’, is suggested. This is a mandatory argument.

2. RECORD DELIMITER: The delimiter used to separate records in the file. Do not use

a letter or number here. A pipe, ‘|’, is suggested. A line break is automatically added

to the end of each line and does not need to be specified in the delimiter. This is a

mandatory argument.

3. NUMBER OF RECORDS : An integer representing the number of records to be cre-

ated. The application will fill the data file with the number of records specified by this

argument. Non-integer values will throw exceptions. This is a mandatory argument.

4. FILE NAME : The fully qualified output path and filename for the generated table. The

application will throw an exception if the file cannot be opened for writing. A name

such as ‘table.tbl’ is suggested, placing the file in the same directory as the Java Class.

This is a mandatory argument.

5. DATA TYPE : The data type to be used to populate each column in the table. This is

an optional argument and no default is assumed. It must be one of:

• ‘1’: ANSI CHAR datatype

• ‘2’: ANSI DATE datatype

• ‘3’: ANSI DECIMAL datatype

• ‘4’: ANSI DOUBLE datatype

• ‘5’: ANSI FLOAT datatype

32

>java DBCreate | | 100000 table.tbl

-Generate 100 000 rows and store them in a file called ‘table.tbl’. Sep-
arate the columns and rows with a pipe character, ‘|’.
>java DBCreate | | 50000 char10.tbl 1 100 10

-Generate 50 000 rows with 100 columns of character data. Set the field
length to 10 characters. Separate each field and each row with a pipe
character, ‘|’, and store the output in a file called ‘char10.tbl’.
>java DBCreate | | 50000 date.tbl 2 100 0

-Generate 50 000 rows with 100 columns of date data. Separate each
field and each row with a pipe character, ‘|’, and store the output in a
file called ‘date.tbl’.

Figure 1: Example DBCreate Calls

• ‘6’: ANSI INT datatype

• ‘7’: ANSI REAL datatype

• ‘8’: ANSI SMALLINT datatype

• ‘9’: ANSI TIME datatype

• ‘10’: ANSI TIMESTAMP datatype

• ‘11’: ANSI VARCHAR datatype

6. NUMBER OF COLUMNS : The number of data columns to include in the data set. Each

column will be filled with random data of the type specified in DATA TYPE above. This

is an optional argument and no default is assumed.

7. DATA SIZE : The length of the data field to be created. This argument is only applicable

to CHAR and VARCHAR data types. Specify a ‘0’ for all other data types. This is an

optional argument and no default is assumed.

All of the above arguments must be specified in the order listed. The user must validate

input data as no error checking is performed. DBCreate will notify the user after the creation

33

Figure 2: DBBench GUI

of each individual set of 1 000 rows. If an existing file is specified in the FILE NAME argument,

it will be overwritten without warning. DBCreate can be invoked with a call similar to the

ones in figure 1.

4.2 DBBench

An application was needed to perform query benchmarking of remote data sources. This

application needed to meet the following design goals:

1. Perform benchmarking in a universal manner with four different DBMS’s (i.e. no op-

timized or individualized code for different DBMS’s beyond that which is required to

control specific parameters such as prefetching, etc.).

2. Allow the user to specify the queries executed, what portions of execution were instru-

mented, the status of prefetching, the servers contacted, etc.

34

3. Be deployable on any platform without the need for redevelopment.

4. Allow control via command line scripting for automated testing to be performed.

5. Support connection to and querying of several different DBMS’s.

Since no application could be found that met all the design goals, the decision was made

to develop one. Java was chosen as the language to allow universal deployment while using

the standard JDBC driver calls (thus supporting several DBMS’s). DBBench is a Java Swing

application developed to record performance measurements for queries, etc. executed on

remote data sources. DBBench has many features:

• Instrument connection open and close, query open, row fetch and server ping times:

DBBench can record the time taken to open a connection to a server, close a connection

to a server, submit a query and open a cursor, fetch a configurable number of rows, and

ping an IP address.

• Configurable options: DBBench can be configured to instrument any number of row

fetches and any number of repetitions for the posed query set. Prefetching can also be

enabled or disabled.

• Different Servers: DBBench can instrument iAnywhere Solutions Adaptive Server Any-

where, Microsoft SQL Server 2000, Oracle Database 10g, IBM DB2 8.1, and Sybase

Adaptive Server Enterprise using publically available JDBC drivers.

DBBench can run and instrument any number of queries on any of the five supported

servers. Results are recorded in text files that are human-readable and parseable by Result-

Parse (below). DBBench was created with an easy to use GUI that provides feedback regarding

35

the status of a query set upon its completion. See figure 2 for a look at the DBBench GUI.

DBBench can also be invoked from the command line using a rigid parameter structure as

outlined below:

1. NUMBER OF FETCHES : The number of fetches to perform for this test. Non-integer

arguments will throw an exception. DBBench will perform up to the specified number of

fetches when running a query. DBBench will stop prematurely if the record set contains

less than the specified number of records.

2. NUMBER OF RUNS : The number of times to repeat each query. Non-integer argu-

ments will throw an exception. DBBench will perform each query this number of times.

3. PING TIMEOUT : The amount of time (in milliseconds) to wait before aborting a ping

timing. Non-integer arguments will throw an exception.

4. SLEEP TIME : The amount of time (in milliseconds) to pause between successive exe-

cutions. Non-integer arguments will throw an exception. DBBench will pause for this

amount of time before starting the next run or the next query within a run.

5. INSTRUMENT OPEN : ‘0’ or ‘1’. A value of ‘1’ tells DBBench to record the amount of

time it takes to open a connection to the server.

6. OPEN CONNECTION : ‘0’ or ‘1’. A value of ‘1’ tells DBBench to open a connection to

the server.

7. INSTRUMENT QUERY : ‘0’ or ‘1’. A value of ‘1’ tells DBBench to record the amount

of time it takes to open the result set, fetch each row, and the total amount of time

36

required to open the result set and request each row (i.e. the total query cost, not the

fetch or query execution costs individually).

8. RUN QUERY : ‘0’ or ‘1’. A value of ‘1’ tells DBBench to run the queries specified in

the query list.

9. INSTRUMENT CLOSE : ‘0’ or ‘1’. A value of ‘1’ tells DBBench to record the amount

of time it takes to close the connection to the server.

10. CLOSE CONNECTION : ‘0’ or ‘1’. A value of ‘1’ tells DBBench to close the connection

to the server.

11. INSTRUMENT PING : ‘0’ or ‘1’. A value of ‘1’ tells DBBench to record the ping time

to the server’s IP address.

12. PING ADDRESS : ‘0’ or ‘1’. A value of ‘1’ tells DBBench to ping the IP address of the

server as specified in the drivers table.

13. SLEEP : ‘0’ or ‘1’. A value of ‘1’ tells DBBench to pause between execution of each

query and each run. The pause duration is specified in the SLEEP TIME argument.

14. PREFETCH : ‘0’ or ‘1’. A value of ‘1’ tells DBBench to execute queries with prefetch

enabled.

15. QUERY FILENAME : This is the fully qualified path to a file of queries to be imported

and executed. See below for the import file specification. Do not use spaces in this

pathname.

37

>java Main 200000 1 1000 1000 1 1 1 1 1 1 0 0 0 1

asa-tpch.sql config-asa-1.dbt 1

-Execute DBBench to perform 1 run with 200 000 fetches. Set the
sleep time and ping timeout to 1 second. Instrument and perform a
connection open, query execution and connection close. Do not ping
the server addres or sleep between executions. Turn prefetching on for
the queries stored in the ‘asa-tpch.sql’ file. Use the driver configuration
stored in the ‘config-asa-1.dbt’ file and run the queries.
>java Main 1 100 500 500 0 1 0 1 0 1 1 1 1 0

asa-tpch-max.sql config-asa-2.dbt 1

-Execute DBBench to perform 100 runs with 1 fetch per run. Set the
sleep and ping timeout to 0.5 seconds. Do not instrument connec-
tion open, query execution or connection close: however, perform all
three operations. Instrument and ping the server address. Sleep be-
tween query executions, but do not use prefetching. Execute the queries
stored in the ‘asa-tpch-max.sql’ file. Use the driver configuration stored
in the ‘config-asa-2.dbt’ file and run the queries.

Figure 3: Sample DBBench Command Line Executions

16. CONFIG FILENAME : This is the fully qualified path to a file of driver configura-

tions that are to be used to execute the imported queries. Drivers must be specified in

DBBench and saved to a configuration file first. This file may then be used for query

execution. Do not use spaces in this pathname.

17. RUN : ‘0’ or ‘1’. A value of ‘1’ tells DBBench to execute the queries imported using

the specified drivers and execution parameters. A value of ‘0’ tells DBBench to set

the configuration parameters provided in the command line call, but not to execute

the queries. This feature allows the user to check that a configuration specified in a

command line call to DBBench is correct before execution of the queries begins.

Each argument is required and must be specified exactly as outlined. Invalid arguments

will throw exceptions. DBBench will automatically quit after query execution has completed.

38

The transcript generated during execution will be written to the file ‘transcript.dbt’ which

is human-readable using an editor such as Microsoft WordPad. See figure 3 for some sample

DBBench command line executions.

As mentioned above, queries must be specified in an import file. The import file must

contain the following arguments (on separate lines) before any queries are specified. Comments

(see below) may appear anywhere in the file but must be on their own line:

1. ‘dbms’: This argument speficies the DBMS type to be benchmarked. It must be one

of ‘asa’ (iAnywhere Adaptive Server Anywhere 9.0), ‘mss’ (Microsoft SQL Server 2000),

‘db2’ (IBM DB2 8.1), ‘oracle’ (Oracle Database 10g) or ‘ase’ (Sybase Adaptive Server

Enterprise 12.5).

2. ‘delim’: This argument specifies the delimiter used to separate queries within the import

file. A ‘;’ is suggested in order to avoid using character strings that may appear in the

query text (such as the word ‘go’).

3. ‘–’: This argument may appear multiple times throughout the file and is used to denote

that the current line is a comment. Comments must appear on a line by themselves and

not, for example, at the end of a line containing a query.

It is suggested that arguments occupy the first few lines of the import file. See figure 4 for

a sample import file.

Instrumentation in DBBench is quite simple. Figure 5 shows the instrumentation sur-

rounding several portions of query submission and fetch code. The recorder starts immediately

prior to issuing the related request and stops immediately after the request has completed.

39

–REQUIRED ARGUMENTS
dbms=asa
delim=;

–PERFORM SELECT QUERY FIRST
SELECT COL1, COL2
FROM TEST TABLE
WHERE COL1 > 1000;

–PERFORM JOIN QUERY NEXT
SELECT T.COL1, T.COL2
FROM T, R
WHERE T.COL1 = R.COL1;

Figure 4: Sample Query Import File

The methods used to start and stop the recorder, and calculate the total time are presented

in figure 6. The recorder itself uses nanosecond precision and accuracy obtained with the

System.nanoTime() method in JDK 1.5.0 [18]. As a result, extremely accurate time mea-

surements can be taken.

4.3 NetBench

To understand how well different DBMS’s use the network, an application was required to

perform benchmarking on the actual network connection between the servers and the client

machine. This utility needed to meet the following design goals:

1. A Java implementation was necessary to facilitate comparison of the times obtained with

DBBench (also developed in Java).

2. The implementation should impose as little overhead as possible during communica-

tion between the client and server portions. This is necessary to ensure that accurate

40

public String runInstrumentedQuery(String queryString, int numberToFetch,
boolean prefetch) {

//This if statement disables prefetching for system 3
if(dbmsType.compareTo(”system 3”) == 0 && !prefetch)

stmt = connection.createStatement(ResultSet.TYPE FORWARD ONLY,
ResultSet.CONCUR UPDATABLE);

else
stmt = connection.createStatement(ResultSet.TYPE FORWARD ONLY,

ResultSet.CONCUR READ ONLY);
//This statement disables prefetching for system 2 and system 4
if(!prefetch)

stmt.setFetchSize(1);
//system 1 requires this line when performing max queries
if(prefetch && dbmsType.compareTo(”system 1”) == 0 &&

queryString.contains(”max”))
stmt.setFetchSize(1);

...
Thread.sleep(0);
totalRecorder.start();
queryRecorder.start();
ResultSet rs = stmt.executeQuery(queryString);
queryRecorder.stop();
queryRecorder.reset();
//This if statement disables prefetching for system 2 and system 4
//system 1 prefetch is done in connection string
if(dbmsType.compareTo(”system 1”) != 0 && !prefetch)

rs.setFetchSize(1);
boolean keepGoing = true;
for(int i = 0; i < numberToFetch & keepGoing; i++) {

Thread.sleep(0);
fetchRecorder.start();
keepGoing = rs.next();
fetchRecorder.stop();
fetchRecorder.reset();}

totalRecorder.stop();
...

}

Figure 5: DBBench code instrumentation

41

public boolean start() {
startTime = System.nanoTime();
return true;

}
...

public boolean stop() {
endTime = System.nanoTime();
return true;

}
...

public boolean reset() {
...

filePointer.print(trialNumber+“\t”);
filePointer.print(startTime+“\t”);
filePointer.print(endTime+“\t”);
filePointer.print(endTime-startTime+“\r\n”);

endTime = 0;
startTime = 0;
trialNumber++;

...
}

Figure 6: Recorder methods for starting and stopping time

42

measurements of actual maximum network throughput are taken.

Since no utility could be located for free that met the design goals, the decision was made

to develop one. NetBench is a Java utility developed to benchmark network performance

between two machines connected via a network. It was intentionally designed to use no GUI

and minimal code so that very precise timings can be taken with minimal overhead incurred.

Data for each test is generated in the same format as the data generated by DBBench, and is

thus human-readable and parseable by ResultParse (below). NetBench has a rigid argument

structure containing the following arguments:

1. HOST : This is the IP address of the host. For SEND MODE, it is the destination

address that the client will connect to. For LISTEN MODE, it is the address of the

server instance of NetBench.

2. PORT : This is the port number of the host. For SEND MODE, it is the destination

port that the client will connect to. For LISTEN MODE, it is the port number the

NetBench server instance will listen on. Non-integer values will throw an exception.

3. MODE : This is the mode that this instance of NetBench will operate under. Non-integer

values will throw an exception. The specified value must be one of the following:

• LISTEN MODE : ‘0’. This value tells NetBench to operate as a server: accepting

incoming data from clients.

• SEND MODE : ‘1’. This value tells NetBench to operate as a client. Clients send

data to servers and instrument the time it takes to send the data accross the

network.

43

4. BYTES : This is the size of a data packet to be sent (in bytes). When operating in

SEND MODE, this is the size of a data packet that will be sent PACKETS times.

When operating in LISTEN MODE, this is the size of an acknowledgement packet that

is sent for every packet received. Non-integer values will throw an exception.

5. PACKETS : This argument specifies the number of packets to be sent. Non-integer values

will throw an exception. Specify a value of ‘0’ for instances running in LISTEN MODE.

6. RUNS : This argument specifies the number of runs to perform. When operating in

LISTEN MODE, this is the number of runs that NetBench will listen for before exiting

(as per the KILL argument below). When operating in SEND MODE, this is the number

of runs that NetBench will perform with the given parameters. Non-integer values will

throw an exception.

7. KILL: When running in LISTEN MODE, this argument tells NetBench to exit after

receiving data from the number of runs specified in RUNS. When in SEND MODE,

NetBench will automatically exit when it has completed the specified number of runs.

The argument must be one of:

• ‘true’ : Exit when the number of runs has been received.

• ‘false’ : Do not exit. Receive an unlimited number of runs.

Either value may be specified when running in SEND MODE.

NetBench contains two components: a listener (server) and a sender (client). Only one com-

ponent is active for each instance of NetBench (i.e. there is no active client when NetBench is

44

>java NetBench 10.0.0.2 65001 0 8 0 10 true

-Launch this instance of NetBench as a listener awaiting incoming con-
nections on port 65 001. Exit after 10 runs have been received.
>java NetBench 10.0.0.2 65001 1 10 50000 10 false

-Launch this instance of NetBench as a sender. Send 50 000 packets
containing 10 bytes of data each to the listener at address 10.0.0.2 on
port 65 001. Repeat the run 10 times.

Figure 7: Example NetBench Calls

invoked as a listener). Two versions of NetBench have been deployed: one version will compile

with JDK 1.4.2 [17]; the second version compiles with JDK 1.5.0 [18]. The latter version was

developed to make use of the nanosecond precision and accuracy of the System.nanoTime()

function for timing measurement. The former version was developed to be deployed without

requiring additional software (JDK 1.5.0) installations. It is recommended that NetBench

senders be run on machines with JDK 1.5.0 installed to achieve the most accurate measure-

ments possible. Since NetBench listeners do not make any time measurements, they may be

installed on a machine with either JDK version 1.4.2 or 1.5.0.

Output from NetBench tests will be written to the file ‘send.txt’ in the same format as

fetch results from DBBench. Thus, they may be parsed by ResultParse using the SPLIT

operation with FETCH suboperation (see below). See figure 7 for sample calls to NetBench.

4.4 ResultParse

Although DBBench and NetBench provide results in a human-readable format, when auto-

mated testing is performed the format of the data may require alteration in order to be useful

for analysis. As such, an application was needed to transform the results obtained in section

5 into a more usable format. Since the data format generated by DBBench and NetBench is

45

proprietary, no other transformation tool could be useful. Thus, one was developed.

ResultParse is a Java utility developed to parse the fetch and query result files created by

DBBench and NetBench. Data for each specific test is written to its own file. ResultParse

requires a very rigid argument specification with the following arguments:

1. FILE NAME : This is the fully qualified path to the input file.

2. OPERATION : This is the operation to be performed by ResultParse and must be one

of:

• ‘SPLIT’ : Split one input file into multiple output files. This will take a file con-

taining results for several different query and fetch tests and save the results for

each test into its own file.

• ‘JOIN’ : Combine multiple input files into one output file. This is useful for looking

at many different output files together in a spreadsheet for comparison.

• ‘STAT’ : Add statistics generation footer for use in Excel. This is useful for auto-

matically calculating the max, min, average, etc. of a result file.

• ‘ALTER’ : Alter the results contained in a result file. This allows the scale of the

recorder to be changed after recording has taken place. NOTE: Digits are truncated,

not rounded.

3. SUBOPERATION : This is the suboperation to be performed and must be one of:

• ‘QUERY’ : The input file(s) are from a query test, not a fetch test.

• ‘FETCH’ : The input file(s) are from a fetch test, not a query test.

46

• ‘MERGE’ : The input files are merged and the full result line for each file is left

intact (i.e. the trial number, recorder start time and recorder end time are not

removed from the line before writing it to the merged file).

• ‘STRIP’ : The input files are merged and only the recorder time is printed for each

file (i.e. the trial number, recorder start time and recorder end time are removed

from the line before writing it to the merged file).

• ‘NOOP’ : No suboperation to be performed.

QUERY and FETCH are only applicable to the SPLIT operation while MERGE and

STRIP are only applicable to the JOIN operation. NOOP is a required suboperation

for STAT and ALTER operations.

4. MAGNITUDE : This argument specifies the magnitude for each of the operations as

defined below:

• ‘SPLIT’ : The number of output files that should be created.

• ‘JOIN’ : The number of input files that should be read.

• ‘STAT’ : 0. Number is not used but must still be present.

• ‘ALTER’ : The number of digits to be truncated.

5. OUTPUT PATH : The location where output files should be placed. This must be a

fully qualified path without a file name.

6. FILE LIST - or - SECOND SET : This argument will either begin a file list for use in

the JOIN operation, or specify the SECOND SET argument.

47

• FILE LIST : This argument and every argument after it are optional and specify

one of the input files required for the JOIN operation. The number of files specified

in MAGNITUDE must be entered as arguments. Separate each fully qualified file

path (with file name) with a space.

• SECOND SET : This argument is optional and can be specified for the SPLIT

operation with FETCH suboperation. By default, ResultParse will split the second

set of fetch results listed in the result file. For example, if the fetch test has been

repeated more than once, the second set of results will be used and all other results

will be omitted from the split files. The default option is useful when performing

an operation multiple times to ensure the results are parsed from a query run with

a hot cache. Setting SECOND SET to FALSE will force ResultParse to use the

first set of results listed in the result file. This is useful if a test is being repeated.

Any missing arguments from 1 to 6 will cause an exception to be thrown. File paths

can not include spaces. Specifying an incorrect argument may generate unwanted results. A

non-integer MAGNITUDE argument will throw an exception. Output files will be overwritten

without warning if they already exist. Output file names for SPLIT operations will be chosen

by ResultParse according to the file number and data table specified in the query. Some

example calls to ResultParse are given in figure 8.

48

>java ResultParse query.txt SPLIT QUERY 15 214/query/

-Split the query results stored in query.txt into 15 output files and store
the result files in the subfolder ‘query’ of the folder ‘214’.
>java ResultParse fetch.txt SPLIT FETCH 8 114/fetch/

-Split the fetch results stored in fetch.text into 8 output files and store
the result files in the subfolder ‘fetch’ of the folder ‘114’.
>java ResultParse ping.txt ALTER NOOP 3

114/alter/pingalter.txt

-Alter the file ping.txt by truncating 3 digits from each result value and
place the result in a file called ‘pingalter.txt’ in the subfolder ‘alter’ of
the folder ‘114’.
>java ResultParse alter/ping.txt STAT NOOP 0 114/

-Add statistics calculators to the file ‘ping.txt’ and store the result file
in the folder ‘114’.
>java ResultParse merge-open.txt JOIN STRIP 3

1xinstrument/ 114/open.txt 124/open.txt 134/open.txt

-Join the ‘open.txt’ files in folders ‘114’, ‘124’ and ‘134’. Strip off the
extraneous information and store the result file in the folder ‘1xinstru-
ment’.

Figure 8: Example ResultParse Calls

5 Experimental Setup

Now that we have outlined the applications we will use to run our experiments, we can provide

an outline of their setup and execution. This section provides an overview of the hardware

and software setup used to obtain the results in section 6. A description of the procedure used

to gather results is also presented.

5.1 Hardware Setup

Experiments were performed using three different machines with the hardware specifications

shown in table 3. The four hard drives in the client machine were used as follows: Drive C was

used for system and application software; Drive D was used to hold queries and data sets for

49

Brand Dell Dell Dell
Model Precision 410 Precision 410 OptiPlex GX150
RAM 128 MB SDRAM 192 MB SDRAM 256 MB SDRAM
HD SCSI: 4x8 GB SCSI: 2x8 GB IDE: 1x6 GB; 1x15 GB;
Network 10/100BaseT 10/100BaseT 10/100BaseT
Processor 400 MHz Pentium II 450 MHz Pentium II 800 MHz Pentium III

Client Server 1 Server 2

Table 3: Machine Hardware Specification for Experiments

Brand SMC Linksys
Model EtherEZ 3605T EZXS88W
Speed 10BaseT 10/100BaseT

Hub 1 Hub 2

Table 4: Hub Hardware Specification for Experiments

experiments; Drive E was used to hold extraneous files; Drive F was used to hold the results

from experiments. The two hard drives in the server machines were used as follows: Drive C

was used for system and DBMS software; Drive D was used to hold data files for each of the

four DBMS’s (i.e. log files, data tables, etc.).

The client and server were connected using Hubs 1 and 2 from table 4. An uplink connection

providing access to the network and a DHCP server was used to transfer results as well as test

scripts to and from the test machines. The uplink cable was disconnected while tests were run

to ensure network traffic did not affect results.

5.2 Software Setup

The machines discussed above were configured with the software components outlined in table

5. JBuilder was used as a development environment for DBCreate, DBBench, NetBench and

ResultParse. See section 4 for more information about these applications. Ethereal is a packet

50

OS Windows XP Professional SP2 Windows XP Professional SP2
Applications Borland JBuilder

Ethereal
DBMS’s System 1

System 2
System 3
System 4

JDK 1.5.0 1.4.2

Client Server 1 and 2

Table 5: Software Specification for Experiments

sniffing application that was used to confirm the status of prefetching, as well as retrieve the

sizes of packets sent by the various systems. JDK 1.5 [18] was used on the client machine to

allow DBBench and NetBench to use nanosecond precision and accuracy. Due to the licensing

agreement in place for the use of different DBMS’s, it is not possible to publish product names

along with performance results. As such, the DBMS’s have been renamed to System 1 - System

4. JDK 1.4.2 [17] was used on the server machines as support for the applications and utilities

that compose System 1, 3 and 4.

5.3 Experimental Procedure

Two experiments were performed to obtain the results used for analysis in section 6. Exper-

iment 1 was performed to determine the communication time at the actual maximum data

rate between the client and server machines. This time is important to determine if the prob-

lem of communication cost modeling can be solved through measurements of actual network

throughput (not theoretical maximums). Experiment 2 was performed to determine how row

size, data type, link speed, prefetching status, network packet size, server CPU speed and

DBMS affect communication cost.

51

5.3.1 Experiment 1

Experiment 1 was performed to determine the communication time at the actual maximum

data rate between the client and server machines (i.e. using raw sockets without any DBMS

overhead involved). The experiment proceeded as follows:

1. Connect server 1 and the client machine using hub 1. Do not connect the hub to the

main network so that network traffic does not impact results.

2. On server 1, compile and launch NetBench. Configure it to listen on port 65 001.

3. On the client, compile and launch NetBench using configuration 1 from appendix A.

4. Repeat step 3 with configuration 2 - 26 instead of configuration 1.

5. Repeat steps 1 - 4 using server 2 instead of server 1.

6. Repeat steps 1 - 5 using hub 2 instead of hub 1.

NetBench was configured to send 50 000 data blocks during the experiment so that times

measured can be compared to the times measured during experiment 2 (in which each data ta-

ble will contain 50 000 rows). The experiment was repeated 30 times to generate a statistically

significant data set with relative error below 5%.

5.3.2 Experiment 2

Experiment 2 was performed to determine how row size, data type, link speed, prefetching

status, network packet size, server CPU speed and DBMS affect communication cost. The

experiment proceeded as follows:

52

System 1 1460 2920
System 2 4096 2048
System 3 32767 16384
System 4 2048 1024

System Packet Size 1 Packet Size 2

Table 6: Packet Sizes for Experiment 2

1. Connect server 1 and the client machine using hub 1. Do not connect the hub to the

main network, ensuring that the network traffic does not impact results.

2. On server 1, load system 1 and generate the data tables using each schema from appendix

C.

3. On server 1, load data into the data tables created in step 2. Shut down system 1.

4. Repeat steps 2 and 3 for systems 2 - 4.

5. Repeat steps 1 - 4 for server 2.

6. On server 1, set the packet size for system 1 to packet size 1 from table 6.

7. Defragment all hard drives on server 1 and the client machine.

8. Restart server 1 and the client machine.

9. On server 1, load system 1.

10. On the client, launch DBBench and disable prefetching.

11. Lock server 1 to ensure that incurred operating system overhead is minimal. This allows

system 1 to maximize its performance.

53

12. In DBBench, execute the queries listed in appendix B and record the total time taken

to execute the query and fetch the entire result set.

13. Repeat steps 6 - 12 for systems 2 - 4.

14. Repeat steps 6 - 13 using server 2 instead of server 1.

15. Repeat steps 6 - 14 using hub 2 instead of hub 1.

16. Repeat steps 6 - 15 with prefetching enabled in DBBench.

17. Repeat steps 6 - 16 using packet size 2 instead of packet size 1 for each of systems 1 - 4.

DBBench was configured to fetch 50 000 rows during the actual row tests. This forced the

system to scan through the entire data table in memory. Actual row tests were repeated 30

times. During the column maximum tests, DBBench was configured to fetch the result row

1000 times. Thus, a statistically significant set of results with relative error below 5% was

obtained for use in section 6. See appendix B for query definitions and appendix C for schema

definitions.

6 Experimental Results

Figure 9 presents a simplified view of the query instrumentation performed in DBBench. Time

T1 is measured, the result set is opened, each result row is fetched, the result set is closed,

and time T2 is measured. The goal is to isolate the communication cost from the simplified

cost model. As was discussed in the experimental procedure, the query execution times for

actual rows and the calculation of the maximum value in a column were instrumented using

54

T1

resultSet.open(<query string>);
while(<more records>)

resultSet.next();
resultSet.close();
T2

Figure 9: Simplified View of DBBench Query Instrumentation

sample queries posed over tables containing 100 columns of the same data type. Each data

table contained columns of a different data type. Equation (7) presents the simplified cost

model that will be assumed for analysis purposes. In order to isolate communication cost it

is necessary to remove the cost, COTHER, of query execution from the cost model. This step

can be completed in several different ways. One way is to subtract the time required to fetch

a column maximum, CMAX , from the time required to fetch the actual row data, CROW , as

seen in equation (9). These queries were chosen specifically for their simplicity. “SELECT *”

queries force the DBMS to load and touch each row in a given table. “SELECT MAX(. . .)”

queries require the same amount of overhead (i.e. load and scan through each row in the

given table) but only return one result row. As such, the time it takes to perform a SELECT

MAX(. . .) query can be subtracted from the time it takes to perform a SELECT * query

to remove the execution overhead from recorded timings, leaving the communication cost for

analysis. Three basic assumptions must be made:

1. The data tables are in memory : With the data tables in memory during query execution,

no disk accesses are performed and disk I/O is not a factor in recorded times.

2. Negligible cost to transfer the maximum value: The communication cost of transmitting

the maximum column value result set is negligible.

55

t1 m1

resultSetA.open(SELECT * FROM TABLE); resultSetB.open(SELECT MAX(COLUMN)
FROM TABLE);

while(<more records in A>) while(<more records in B>)
resultSetA.next(); resultSetB.next();

resultSetA.close(); resultSetB.close();
t2 m2

Actual Row Fetch Column Maximum Fetch

Figure 10: Simplified View of Query Instrumentation for Actual Row Fetch and Column
Maximum Fetch

3. Negligible loop evaluation cost : The cost of evaluating the loop condition during query

execution is negligible.

Instrumentation for these queries can be seen in figure 10.

CCOMM = CROW − CMAX (9)

With the instrumentation in figure 10, equations (10) and (11) can be built.

CROW = t2 − t1 (10)

CMAX = m2 − m1 (11)

By substituting equations (10) and (11) into equation (9), we are left with the final com-

munication cost calculation presented in equation (12).

CCOMM = (t2 − t1) − (m2 − m1) (12)

56

Source Average Link Average Prefetch Average Packet Average CPU
Speed Difference Difference Size Difference Speed Difference

(% Reduction) (% Reduction) (% Reduction) (% Reduction)

System 1 23.79 84.14 2.30 11.29
System 2 12.34 87.90 1.08 6.37
System 3 36.37 79.66 0.76 10.69
System 4 20.61 75.82 -2.52 6.56

NetBench 48.90 99.58 1.02 12.54

Table 7: Average Differences for Variables

This final equation allows us to calculate communication cost from the timings gathered

during the experiments outlined above. Other methods of calculating the network time may

also exist. This method, however, allows us to gather a statistically significant data set using

very simple queries. Using these simple queries, we can also say with reasonable assurance that

each DBMS will do a similar amount of work, making comparisons between systems possible.

6.1 Results

This section presents an overview of observations obtained from the data gathered in section

5. Graphs describing the data can be found in appendix D. Two types of graphs are provided:

scatter plots show the overall trend of fetch times on a per row basis as row size is increased,

and bar charts show the overall trend of fetch times on a per row basis as data type is varied.

Table 7 shows the average difference between per row fetch times based on a variance of several

criteria. The difference is given as a percentage reduction in fetch time as the variable (i.e.

link speed, prefetch status, packet size, CPU speed) is increased (or enabled, for prefetching).

1. DBMS : As can be seen from table 8, 9, 10 and 11, there is a large difference between

DBMS software in fetch times per row (note that the minimum, median and maximum

57

Packet Size CPU Speed Link Speed Prefetch Status Minimum Median Maximum
(bytes) (MHz) MBit/Sec (1=On;0=Off) (ms) (ms) (ms)

1460 450 10 0 0.8028 1.0730 2.6962
1460 450 10 1 0.1032 0.2896 1.5936
1460 450 100 0 0.6974 0.8380 1.6250
1460 450 100 1 0.0940 0.1750 0.6600
1460 800 10 0 0.6674 0.9222 2.3694
1460 800 10 1 0.1102 0.2090 1.4152
1460 800 100 0 0.5564 0.6788 1.3080
1460 800 100 1 0.1086 0.1748 0.4636
2920 450 10 0 0.8104 1.0776 2.8546
2920 450 10 1 0.1106 0.2136 1.4242
2920 450 100 0 0.6946 0.8330 1.6612
2920 450 100 1 0.1028 0.1766 0.7778
2920 800 10 0 0.6718 0.9302 2.5368
2920 800 10 1 0.1138 0.2190 1.4206
2920 800 100 0 0.5664 0.6832 1.3324
2920 800 100 1 0.1084 0.1762 0.6820

Table 8: System 1 Data Ranges

Packet Size CPU Speed Link Speed Prefetch Status Minimum Median Maximum
(bytes) (MHz) MBit/Sec (1=On;0=Off) (ms) (ms) (ms)

4096 450 10 0 1.2644 1.5728 4.3286
4096 450 10 1 0.1270 0.2362 2.2414
4096 450 100 0 1.0822 1.2686 3.5740
4096 450 100 1 0.1272 0.2280 2.1466
4096 800 10 0 1.0744 1.3778 4.1890
4096 800 10 1 0.1298 0.2356 2.1958
4096 800 100 0 0.8876 1.0712 3.5816
4096 800 100 1 0.1292 0.2294 2.1502
2048 450 10 0 1.2804 1.5796 4.4414
2048 450 10 1 0.1280 0.2376 2.2016
2048 450 100 0 1.0868 1.2694 3.6246
2048 450 100 1 0.1292 0.2300 2.2026
2048 800 10 0 1.0810 1.4282 4.2980
2048 800 10 1 0.1300 0.2396 2.2390
2048 800 100 0 0.9000 1.0904 3.5660
2048 800 100 1 0.1300 0.2288 2.1538

Table 9: System 2 Data Ranges

58

Packet Size CPU Speed Link Speed Prefetch Status Minimum Median Maximum
(bytes) (MHz) MBit/Sec (1=On;0=Off) (ms) (ms) (ms)

32767 450 10 0 0.7996 1.0190 3.2946
32767 450 10 1 0.1406 0.3324 2.7404
32767 450 100 0 0.6398 0.7484 1.7610
32767 450 100 1 0.1350 0.1860 0.6080
32767 800 10 0 0.6896 0.9080 3.1708
32767 800 10 1 0.1380 0.3218 2.6934
32767 800 100 0 0.5350 0.6358 1.3108
32767 800 100 1 0.1288 0.1666 0.5842
16384 450 10 0 0.8330 1.0318 3.3496
16384 450 10 1 0.1396 0.3272 2.7392
16384 450 100 0 0.6572 0.7642 1.6982
16384 450 100 1 0.1372 0.1958 0.5960
16384 800 10 0 0.7128 0.9040 3.1630
16384 800 10 1 0.1326 0.3180 2.6920
16384 800 100 0 0.5464 0.6562 1.3240
16384 800 100 1 0.1294 0.1632 0.5552

Table 10: System 3 Data Ranges

Packet Size CPU Speed Link Speed Prefetch Status Minimum Median Maximum
(bytes) (MHz) MBit/Sec (1=On;0=Off) (ms) (ms) (ms)

2048 450 10 0 0.9986 1.2402 2.7398
2048 450 10 1 0.2240 0.4406 1.3236
2048 450 100 0 0.8400 1.0102 1.8326
2048 450 100 1 0.1938 0.3390 0.7854
2048 800 10 0 0.8274 1.1098 2.4562
2048 800 10 1 0.2076 0.4422 1.3398
2048 800 100 0 0.6868 0.8158 1.9280
2048 800 100 1 0.1798 0.3750 1.7312
1024 450 10 0 0.9864 1.2308 2.6450
1024 450 10 1 0.2176 0.4438 1.3218
1024 450 100 0 0.8370 1.0104 1.8168
1024 450 100 1 0.1934 0.3326 0.8154
1024 800 10 0 0.8078 1.0112 2.4198
1024 800 10 1 0.1976 0.4352 1.3600
1024 800 100 0 0.6592 0.8240 1.5718
1024 800 100 1 0.1784 0.3476 0.7874

Table 11: System 4 Data Ranges

59

times shown are per row fetch time). The median was chosen instead of the mean as

outliers have a large impact on averages. Looking at the difference in median values by

source illustrates that each DBMS has different methods of, and overheads associated

with, sending data over the network. Thus, one must experiment with each system to

be modeled to generate a model that represents all the required DBMS’s.

2. Link Speed : As can be seen from table 7, as well as from a comparison of the scatter

plots in appendix D, an increase in link speed has a large impact on fetch time per row.

Systems saw a decrease in median fetch time of 12-36% per row. Further, the slope of

the graphs appears to decrease as link speed increases; meaning that an increase in link

speed more greatly affects larger data sizes.

3. Data Size: An analysis of the scatter plots in appendix D shows that fetch time per row

increases as data size increases. This is seen in the upward slope of the scatter plots.

4. Data Type: An analysis of the bar charts in appendix D shows that a small difference

in fetch time per row can be seen between data types. This is visible by noting the

slight differences between each ANSI data type and the fetch times of the CHAR or

VARCHAR data of the same number of bytes. It should be noted that each system,

with the exception of system 4, appears to have significantly greater overhead associated

with accessing date, time and timestamp data as opposed to numeric and character data

(which both experience fairly consistent fetch times).

5. Prefetch Status : The scatter plots in appendix D as well as the percentage decrease due

to prefetch status in table 7 show that prefetching can have a large impact on the fetch

60

time per row. Each system noted a decrease in median fetch time of 75-84% per row.

Thus, prefetching has a very large impact on communication cost.

6. Packet Size: An increase in network packet size appears to have a negligible impact on

median fetch time per row; this can be seen in the small percentage change due to packet

size in table 7. Each system noted a change of no more than 3% in median fetch time,

and the change could easily be attributed to data error.

7. Server CPU Speed : As can be seen in table 7 and the scatter plots in appendix D, server

CPU speed does have a slight impact on median fetch times. Each system saw a decrease

in fetch time of 6-11%. Thus, while not as significant an impact as prefetch status or

link speed, server CPU speed does impact network time.

As noted in section 3, and proven through experimentation in section 5 as well as result

analysis above, several factors have an impact on the amount of time a system must spend

transmitting data over the network.

6.2 Other Notes

Some other information can be extracted from the analysis of the collected data.

6.2.1 Dominant Factors

As seen above, some factors affect the fetch time per row more than others. The dominant

factors seen above appear to be DBMS, link speed, prefetch status and data size. The dom-

inance of each factor can be seen in the large percentage reduction in median fetch time in

table 7, as well as the shape of the scatter plots found in appendix D.

61

Source Average Relative
Error (%)

System 1 0.0274
System 2 0.2026
System 3 0.5756
System 4 0.5043

NetBench 0.0023

Table 12: Average Relative Error for Fetch Times

Other factors, such as data type, packet size and server CPU speed, while having some

impact, do not have nearly as large an impact as the four dominant factors noted above.

6.2.2 Consistency of the Systems

Table 12 shows the average relative error in the fetch times obtained for each system. The low

relative error (below 1% for each system) demonstrates that each system is consistent in its

network transmission overhead. So, although other factors such as network traffic may affect

the consistency of fetch times, the DBMS overhead should remain relatively constant.

It should be noted that although each DBMS has a very low relative error, tests performed

using NetBench had a relative error 2 - 2.5 orders of magnitude lower than the DBMS’s. So,

while they are consistent in their usage of the network, they can do better, and some variance

in times should be expected in a real world deployment.

6.2.3 Efficiency of Link Usage

Each DBMS adds some overhead to the network transmission time. Table 13 is provided for

comparison to table 8-11. Table 14 shows the increase in fetch time per row over the time

taken to fetch data through the network using NetBench. Overhead such as character and value

62

Packet Size CPU Speed Link Speed Prefetch Status Minimum Median Maximum
(bytes) (MHz) MBit/Sec (1=On;0=Off) (ms) (ms) (ms)

1460 450 10 0 0.4726 0.5854 1.3166
1460 450 10 1 0.0024 0.1610 1.1668
1460 450 100 0 0.3702 0.3972 0.5700
1460 450 100 1 0.0010 0.0632 0.4530
1460 800 10 0 0.3940 0.5071 1.2196
1460 800 10 1 0.0024 0.1567 1.1092
1460 800 100 0 0.2912 0.3176 0.4822
1460 800 100 1 0.0008 0.0543 0.3892

Table 13: NetBench Data Ranges

Source Average Time Increase
(% Increase)

System 1 173.04
System 2 239.14
System 3 177.44
System 4 261.86

Table 14: Average Increase in Fetch Time Over NetBench

63

translation, packet formation, etc. are possible causes for the staggering increases in times.

NetBench is using the network as fast as possible and sending only raw byte data; while the

DMBS’s may require some data translations be performed before forming and transmitting a

packet of data. 173-261% of the time required to send data between the NetBench sender and

listener is required to send data of the same size between DBBench and the various DBMS’s.

This is an astonishing increase in fetch time, showing that modeling network transmission time

for DBMS’s cannot be done by modeling communication between two network applications

(i.e. something special happens inside a DBMS when sending data that is unique to it and

must be measured and modelled using the DBMS itself).

6.3 Recommendations

After careful analysis of the data presented above, the following recommendations can be made

to improve the global query optimization strategy in ASA:

1. Minimize Data Size: Data size has a large impact on fetch time. Thus, data should be

reduced at the remote data sources to the greatest extent possible. Further, an attempt

should be made to remove expensive data types during the reduction phase. Data types

such as timestamps, dates, etc. that take significantly longer to fetch should be removed

from the result set whenever possible.

2. Use Prefetching : Enable prefetching whenever a result set larger than one packet is

expected. The most appropriate time to use prefetching is when a large data set is to

be retrieved. Using prefetching on small data sets may incur additional setup overhead,

64

actually increasing average fetch times for data sets with a small number of rows (i.e.

less than one packet).

3. Use Quick Links : In a federated environment, users should be instructed to ensure the

server connection to the network is as fast as possible. This is due to the marked decrease

in fetch time relative to the link speed.

4. Optimize Site Submission Order : Although no control can be exerted over remote

DBMS, link speed or server CPU speed, optimizing the order that queries are submitted

to remote sources may provide additional time savings. For example, a query could be

submitted to a slow data source first so that the additional network time required to

fetch data from that source over the time required for a faster source is minimized.

7 Conclusion

In this paper, an overview of federated database technology has been provided. Several factors

motivated the development of these systems: including data sharing within organizations,

company mergers and acquisitions, and geographic separation of teams. Two different models

of federation were presented. The global schema model provides a unified global view of

remote data sources. The multidatabase language model provides no global schema, and

requires users to explicitly name the remote data sources their query will use. An overview of

the Omni module within ASA was provided.

Some optimization strategies were presented, including the semijoin, replicate and Garlic

optimization algorithms. Strenghts and weaknesses of each strategy were presented, and the

65

reader was directed to additional sources for an overview of other optimization algorithms.

Some of the challenges of performing global optimization were also addressed.

There are many inputs to a global cost model. Some of the most pertinent were noted,

including communication, data reformatting, and subquery and method execution costs. Some

basic formulas for evaluation of these costs were derived; including a working cost model used

to separate communication cost from the additional costs of performing a query.

Several applications were developed to setup and perform the outlined experiments, and

to analyze the data from those experiments. An overview as well as usage instructions for

DBCreate, NetBench, DBBench and ResultParse were provided.

Two sets of experiments were performed to obtain the discussed results. An overview of

the hardware and software setup used to perform the experiments was presented, as well as

the experimental procedure used to collect the analyzed data. A detailed analysis of the data

collected was given. Some recommendations for improving Omni were discussed.

8 Future Work

There are three major areas for future research.

1. Collection of additional data: To enable the development of a global cost model, addi-

tional data must be collected. The experiments outlined in section 5 must be expanded

to include the variance of network utilization. This will help determine what impact

network traffic has on communication cost. Further tests may include increasing the

computation load on each server to determine its affect on communication cost.

66

2. Generation and testing of a communication cost model : Once additional data has been

gathered, it should be possible to refine all the results into a model for calculating

the approximate cost of transferring data through a network. This would be useful

in determining, for example, join strategies to be used when some data resides in a

remote data source, and some data resides locally. Such a model would require testing

on machines with different hardware configurations to determine its accuracy.

3. Gathering and analysis of further cost model parameters: as was outlined in section

3, there are many factors that can affect a cost model for global query optimization.

Which factors can be modeled? Which factors can be instrumented? Which factors can

be controlled in a global setting? Further thought on these topics is required to answer

the above questions and possibly generate a more complete cost model for global query

optimization.

67

References

[1] Sibel Adali, K. Selcuk Candan, Yannis Papakonstantinou, and V. S. Subrahmanian.

Query caching and optimization in distributed mediator systems. In SIGMOD Con-

ference, pages 137–148, 1996.

[2] P. Bodorik, J. Pyra, and J. S. Riordon. Correcting execution of distributed queries. In

Proceedings of the second international symposium on Databases in parallel and distributed

systems, pages 192–201. ACM Press, 1990.

[3] David Brill, Marjorie Templeton, and Clement T. Yu. Distributed query processing

strategies in mermaid, a frontend to data management systems. In Proceedings of the

First International Conference on Data Engineering, pages 211–218. IEEE Computer

Society, 1984.

[4] Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based approach to semantic

query optimization. ACM Trans. Database Syst., 15(2):162–207, 1990.

[5] Neil Coburn and Per-Ake Larson. Multidatabase services: issues and architectural design.

In Proceedings of the 1992 conference of the Centre for Advanced Studies on Collaborative

research, pages 57–66, Toronto, Ontario, Canada, 1992. IBM Press.

[6] John Grant, Witold Litwin, Nick Roussopoulos, and Timos Sellis. Query languages for

relational multidatabases. The VLDB Journal, 2(2):153–172, 1993.

68

[7] L. M. Haas, P. Kodali, J. E. Rice, P. M. Schwarz, and W. C. Swope. Integrating life

sciences data-with a little garlic. In Proceedings of the 1st IEEE International Symposium

on Bioinformatics and Biomedical Engineering, page 5. IEEE Computer Society, 2000.

[8] L. M. Haas, E. T. Lin, and M. A. Roth. Data integration through database federation.

IBM Systems Journal, 41(4):578–596, 2002.

[9] L. M. Haas, P. M. Schwarz, P. Kodali, E. Kotlar, J. E. Rice, and W. C. Swope. Dis-

coverylink: a system for integrated access to life sciences data sources. IBM Syst. J.,

40(2):489–511, 2001.

[10] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Optimizing

queries across diverse data sources. In Proceedings of the 23rd International Conference

on Very Large Data Bases, pages 276–285. Morgan Kaufmann Publishers Inc., 1997.

[11] David K. Hsiao. Federated databases and systems: part i — a tutorial on their data

sharing. The VLDB Journal, 1(1):127–180, 1992.

[12] David K. Hsiao. Federated databases and systems: part ii — a tutorial on their resource

consolidation. The VLDB Journal, 1(2):285–310, 1992.

[13] Ryan Huebsch and Shawn R. Jeffery. Freddies: Dht-based adapative query processing.

Technical report, UC Berkeley, 2003.

[14] Guy M. Lohman. Grammar-like functional rules for representing query optimization al-

ternatives. In Proceedings of the 1988 ACM SIGMOD international conference on Man-

agement of data, pages 18–27. ACM Press, 1988.

69

[15] H. Lu, B. C. Ooi, and C. H. Goh. Multidatabase query optimization: Issues and solutions.

In Proceedings of Third International Workshop on Research Issues in Data Engineering:

Interoperability in Multidatabase Systems, pages 137–143, 1993.

[16] Hongjun Lu, Beng-Chin Ooi, and Cheng-Hian Goh. On global multidatabase query

optimization. SIGMOD Rec., 21(4):6–11, 1992.

[17] Sun Microsystems. J2se 1.4.2. http://java.sun.com/j2se/1.4.2/index.jsp, Accessed De-

cember 3rd, 2004.

[18] Sun Microsystems. J2se 5.0. http://java.sun.com/j2se/1.5.0/index.jsp, Accessed Decem-

ber 3rd, 2004.

[19] M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall,

Upper Saddle River, NJ, 2nd edition, 1999.

[20] S. B. Navathe R. Elmasri. Fundamentals of Database Systems. Addison Wesley, 3rd

edition, 2000.

[21] Mary Tork Roth, Fatma Ozcan, and Laura M. Haas. Cost models DO matter: Providing

cost information for diverse data sources in a federated system. In The VLDB Journal,

pages 599–610, 1999.

[22] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie,

and Thomas G. Price. Access path selection in a relational database management system.

In Philip A. Bernstein, editor, Proceedings of the 1979 ACM SIGMOD International

70

Conference on Management of Data, Boston, Massachusetts, May 30 - June 1, pages

23–34. ACM, 1979.

[23] Leonard D. Shapiro. Join processing in database systems with large main memories.

ACM Trans. Database Syst., 11(3):239–264, 1986.

[24] Shashi Shekhar, Jaideep Srivastava, and Soumitra Dutta. A formal model of trade-off

between optimization and execution costs in semantic query optimization. In Proceedings

of the Fourteenth International Conference on Very Large Data Bases, pages 457–467.

Morgan Kaufmann Publishers Inc., 1988.

[25] Inc. Sybase. SQL Anywhere Studio 9.0.2, 2004.

[26] Marjorie Templeton, Herbert Henley, Edward Maros, and Darrel J. Van Buer. Interviso:

dealing with the complexity of federated database access. The VLDB Journal, 4(2):287–

318, 1995.

[27] H. J. A. van Kuijk, F. H. E. Pijpers, and Peter M. G. Apers. Semantic query optimiza-

tion in distributed databases. In International Conference Proceedings of Advances in

Computing and Information, pages 295–303, May 1990.

[28] Weipeng Paul Yan. Interchanging group-by and join in distributed query processing. In

CASCON ’93: Proceedings of the 1993 conference of the Centre for Advanced Studies on

Collaborative research, pages 823–831. IBM Press, 1993.

71

[29] C. T. Yu, L. Lilien, K. C. Guh, and M. Templeton. Adaptive techniques for distributed

query optimization. In IEEE 1986 International Conference on Data Engineering, pages

86–93, 1986.

[30] Qiang Zhu. Query optimization in multidatabase systems. In Proceedings of the 1992

conference of the Centre for Advanced Studies on Collaborative research, pages 111–127.

IBM Press, 1992.

[31] Qiang Zhu. Estimating Local Cost Parameters for Global Query Optimization in a Mul-

tidatabase System. PhD thesis, University of Waterloo, 1995.

[32] Qiang Zhu and Per-Ake Larson. Solving local cost estimation problem for global query

optimization in multidatabase systems. Distrib. Parallel Databases, 6(4):373–421, 1998.

72

A NetBench Configurations

NetBench configurations are shown in table 15. These configurations were used when running

experiment 1 in section 5.

Configuration MODE BYTES PACKETS RUNS

1 1 2 50 000 30
2 1 3 50 000 30
3 1 4 50 000 30
4 1 5 50 000 30
5 1 6 50 000 30
6 1 7 50 000 30
7 1 8 50 000 30
8 1 9 50 000 30
9 1 10 50 000 30
10 1 50 50 000 30
11 1 75 50 000 30
12 1 100 50 000 30
13 1 125 50 000 30
14 1 150 50 000 30
15 1 175 50 000 30
16 1 225 50 000 30
17 1 250 50 000 30
18 1 200 50 000 30
19 1 300 50 000 30
20 1 400 50 000 30
21 1 500 50 000 30
22 1 600 50 000 30
23 1 700 50 000 30
24 1 800 50 000 30
25 1 900 50 000 30
26 1 1000 50 000 30

Table 15: NetBench Configurations

73

B Queries

This appendix contains those queries mentioned in section 5.

SELECT * FROM table char2;
SELECT max(col1) FROM table char2;
SELECT max(col25) FROM table char2;
SELECT max(col100) FROM table char2;
SELECT col1 FROM table char2;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table char2;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table char2;

Figure 11: Query 2

74

SELECT * FROM table char3;
SELECT max(col1) FROM table char3;
SELECT max(col25) FROM table char3;
SELECT max(col100) FROM table char3;
SELECT col1 FROM table char3;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table char3;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table char3;

Figure 12: Query 3

SELECT * FROM table char4;
SELECT max(col1) FROM table char4;
SELECT max(col25) FROM table char4;
SELECT max(col100) FROM table char4;
SELECT col1 FROM table char4;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table char4;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table char4;

Figure 13: Query 4

75

SELECT * FROM table char5;
SELECT max(col1) FROM table char5;
SELECT max(col25) FROM table char5;
SELECT max(col100) FROM table char5;
SELECT col1 FROM table char5;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table char5;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table char5;

Figure 14: Query 5

SELECT * FROM table char6;
SELECT max(col1) FROM table char6;
SELECT max(col25) FROM table char6;
SELECT max(col100) FROM table char6;
SELECT col1 FROM table char6;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table char6;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table char6;

Figure 15: Query 6

76

SELECT * FROM table char7;
SELECT max(col1) FROM table char7;
SELECT max(col25) FROM table char7;
SELECT max(col100) FROM table char7;
SELECT col1 FROM table char7;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table char7;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table char7;

Figure 16: Query 7

SELECT * FROM table char8;
SELECT max(col1) FROM table char8;
SELECT max(col25) FROM table char8;
SELECT max(col100) FROM table char8;
SELECT col1 FROM table char8;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table char8;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table char8;

Figure 17: Query 8

77

SELECT * FROM table char9;
SELECT max(col1) FROM table char9;
SELECT max(col25) FROM table char9;
SELECT max(col100) FROM table char9;
SELECT col1 FROM table char9;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table char9;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table char9;

Figure 18: Query 9

SELECT * FROM table char10;
SELECT max(col1) FROM table char10;
SELECT max(col25) FROM table char10;
SELECT max(col100) FROM table char10;
SELECT col1 FROM table char10;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table char10;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table char10;

Figure 19: Query 10

78

SELECT * FROM table varchar2;
SELECT max(col1) FROM table varchar2;
SELECT max(col25) FROM table varchar2;
SELECT max(col100) FROM table varchar2;
SELECT col1 FROM table varchar2;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table varchar2;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table varchar2;

Figure 20: Query 12

79

SELECT * FROM table varchar3;
SELECT max(col1) FROM table varchar3;
SELECT max(col25) FROM table varchar3;
SELECT max(col100) FROM table varchar3;
SELECT col1 FROM table varchar3;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table varchar3;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table varchar3;

Figure 21: Query 13

SELECT * FROM table varchar4;
SELECT max(col1) FROM table varchar4;
SELECT max(col25) FROM table varchar4;
SELECT max(col100) FROM table varchar4;
SELECT col1 FROM table varchar4;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table varchar4;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table varchar4;

Figure 22: Query 14

80

SELECT * FROM table varchar5;
SELECT max(col1) FROM table varchar5;
SELECT max(col25) FROM table varchar5;
SELECT max(col100) FROM table varchar5;
SELECT col1 FROM table varchar5;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table varchar5;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table varchar5;

Figure 23: Query 15

SELECT * FROM table varchar6;
SELECT max(col1) FROM table varchar6;
SELECT max(col25) FROM table varchar6;
SELECT max(col100) FROM table varchar6;
SELECT col1 FROM table varchar6;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table varchar6;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table varchar6;

Figure 24: Query 16

81

SELECT * FROM table varchar7;
SELECT max(col1) FROM table varchar7;
SELECT max(col25) FROM table varchar7;
SELECT max(col100) FROM table varchar7;
SELECT col1 FROM table varchar7;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table varchar7;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table varchar7;

Figure 25: Query 17

SELECT * FROM table varchar8;
SELECT max(col1) FROM table varchar8;
SELECT max(col25) FROM table varchar8;
SELECT max(col100) FROM table varchar8;
SELECT col1 FROM table varchar8;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table varchar8;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table varchar8;

Figure 26: Query 18

82

SELECT * FROM table varchar9;
SELECT max(col1) FROM table varchar9;
SELECT max(col25) FROM table varchar9;
SELECT max(col100) FROM table varchar9;
SELECT col1 FROM table varchar9;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table varchar9;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table varchar9;

Figure 27: Query 19

SELECT * FROM table varchar10;
SELECT max(col1) FROM table varchar10;
SELECT max(col25) FROM table varchar10;
SELECT max(col100) FROM table varchar10;
SELECT col1 FROM table varchar10;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table varchar10;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table varchar10;

Figure 28: Query 20

83

SELECT * FROM table date;
SELECT max(col1) FROM table date;
SELECT max(col25) FROM table date;
SELECT max(col100) FROM table date;
SELECT col1 FROM table date;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM table date;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table date;

Figure 29: Query 30

84

SELECT * FROM table decimal;
SELECT max(col1) FROM table decimal;
SELECT max(col25) FROM table decimal;
SELECT max(col100) FROM table decimal;
SELECT col1 FROM table decimal;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table decimal;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table decimal;

Figure 30: Query 31

SELECT * FROM table double;
SELECT max(col1) FROM table double;
SELECT max(col25) FROM table double;
SELECT max(col100) FROM table double;
SELECT col1 FROM table double;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table double;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table double;

Figure 31: Query 32

85

SELECT * FROM table float;
SELECT max(col1) FROM table float;
SELECT max(col25) FROM table float;
SELECT max(col100) FROM table float;
SELECT col1 FROM table float;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM table float;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table float;

Figure 32: Query 33

SELECT * FROM table int;
SELECT max(col1) FROM table int;
SELECT max(col25) FROM table int;
SELECT max(col100) FROM table int;
SELECT col1 FROM table int;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM table int;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table int;

Figure 33: Query 34

86

SELECT * FROM table real;
SELECT max(col1) FROM table real;
SELECT max(col25) FROM table real;
SELECT max(col100) FROM table real;
SELECT col1 FROM table real;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM table real;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table real;

Figure 34: Query 35

SELECT * FROM table smallint;
SELECT max(col1) FROM table smallint;
SELECT max(col25) FROM table smallint;
SELECT max(col100) FROM table smallint;
SELECT col1 FROM table smallint;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table smallint;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table smallint;

Figure 35: Query 36

87

SELECT * FROM table time;
SELECT max(col1) FROM table time;
SELECT max(col25) FROM table time;
SELECT max(col100) FROM table time;
SELECT col1 FROM table time;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM table time;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table time;

Figure 36: Query 37

SELECT * FROM table timestamp;
SELECT max(col1) FROM table timestamp;
SELECT max(col25) FROM table timestamp;
SELECT max(col100) FROM table timestamp;
SELECT col1 FROM table timestamp;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13,
col14, col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25 FROM
table timestamp;
SELECT col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13, col14,
col15, col16, col17, col18, col19, col20, col21, col22, col23, col24, col25, col26, col27, col28,
col29, col30, col31, col32, col33, col34, col35, col36, col37, col38, col39, col40, col41, col42,
col43, col44, col45, col46, col47, col48, col49, col50, col51, col52, col53, col54, col55, col56,
col57, col58, col59, col60, col61, col62, col63, col64, col65, col66, col67, col68, col69, col70,
col71, col72, col73, col74, col75, col76, col77, col78, col79, col80, col81, col82, col83, col84,
col85, col86, col87, col88, col89, col90, col91, col92, col93, col94, col95, col96, col97, col98,
col99, col100 FROM table timestamp;

Figure 37: Query 38

88

C Schemas

This appendix contains those schemas required by the queries performed in section 5. The

schemas are transformed in order to conform to the SQL dialect of the system they are

submitted to (i.e. schemas are translated into the SQL dialect before being created in each of

the systems).

CREATE TABLE table char2 (
col1 CHAR(2),
col2 CHAR(2),
col3 CHAR(2),
col4 CHAR(2),
col5 CHAR(2),
col6 CHAR(2),
col7 CHAR(2),
col8 CHAR(2),
...

...
col99 CHAR(2),
col100 CHAR(2)

)

Figure 38: Schema for Table type char2

89

CREATE TABLE table char3 (
col1 CHAR(3),
col2 CHAR(3),
col3 CHAR(3),
col4 CHAR(3),
col5 CHAR(3),
col6 CHAR(3),
col7 CHAR(3),
col8 CHAR(3),
...

...
col99 CHAR(3),
col100 CHAR(3)

)

Figure 39: Schema for Table type char3

CREATE TABLE table char4 (
col1 CHAR(4),
col2 CHAR(4),
col3 CHAR(4),
col4 CHAR(4),
col5 CHAR(4),
col6 CHAR(4),
col7 CHAR(4),
col8 CHAR(4),
...

...
col99 CHAR(4),
col100 CHAR(4)

)

Figure 40: Schema for Table type char4

90

CREATE TABLE table char5 (
col1 CHAR(5),
col2 CHAR(5),
col3 CHAR(5),
col4 CHAR(5),
col5 CHAR(5),
col6 CHAR(5),
col7 CHAR(5),
col8 CHAR(5),
...

...
col99 CHAR(5),
col100 CHAR(5)

)

Figure 41: Schema for Table type char5

CREATE TABLE table char6 (
col1 CHAR(6),
col2 CHAR(6),
col3 CHAR(6),
col4 CHAR(6),
col5 CHAR(6),
col6 CHAR(6),
col7 CHAR(6),
col8 CHAR(6),
...

...
col99 CHAR(6),
col100 CHAR(6)

)

Figure 42: Schema for Table type char6

91

CREATE TABLE table char7 (
col1 CHAR(7),
col2 CHAR(7),
col3 CHAR(7),
col4 CHAR(7),
col5 CHAR(7),
col6 CHAR(7),
col7 CHAR(7),
col8 CHAR(7),
...

...
col99 CHAR(7),
col100 CHAR(7)

)

Figure 43: Schema for Table type char7

CREATE TABLE table char8 (
col1 CHAR(8),
col2 CHAR(8),
col3 CHAR(8),
col4 CHAR(8),
col5 CHAR(8),
col6 CHAR(8),
col7 CHAR(8),
col8 CHAR(8),
...

...
col99 CHAR(8),
col100 CHAR(8)

)

Figure 44: Schema for Table type char8

92

CREATE TABLE table char9 (
col1 CHAR(9),
col2 CHAR(9),
col3 CHAR(9),
col4 CHAR(9),
col5 CHAR(9),
col6 CHAR(9),
col7 CHAR(9),
col8 CHAR(9),
...

...
col99 CHAR(9),
col100 CHAR(9)

)

Figure 45: Schema for Table type char9

CREATE TABLE table char10 (
col1 CHAR(10),
col2 CHAR(10),
col3 CHAR(10),
col4 CHAR(10),
col5 CHAR(10),
col6 CHAR(10),
col7 CHAR(10),
col8 CHAR(10),
...

...
col99 CHAR(10),
col100 CHAR(10)

)

Figure 46: Schema for Table type char10

93

CREATE TABLE table date (
col1 DATE,
col2 DATE,
col3 DATE,
col4 DATE,
col5 DATE,
col6 DATE,
col7 DATE,
col8 DATE,
...

...
col99 DATE,
col100 DATE

)

Figure 47: Schema for Table type date

CREATE TABLE table decimal (
col1 DECIMAL,
col2 DECIMAL,
col3 DECIMAL,
col4 DECIMAL,
col5 DECIMAL,
col6 DECIMAL,
col7 DECIMAL,
col8 DECIMAL,
...

...
col99 DECIMAL,
col100 DECIMAL

)

Figure 48: Schema for Table type decimal

94

CREATE TABLE table double (
col1 DOUBLE,
col2 DOUBLE,
col3 DOUBLE,
col4 DOUBLE,
col5 DOUBLE,
col6 DOUBLE,
col7 DOUBLE,
col8 DOUBLE,
...

...
col99 DOUBLE,
col100 DOUBLE

)

Figure 49: Schema for Table type double

CREATE TABLE table float (
col1 FLOAT,
col2 FLOAT,
col3 FLOAT,
col4 FLOAT,
col5 FLOAT,
col6 FLOAT,
col7 FLOAT,
col8 FLOAT,
...

...
col99 FLOAT,
col100 FLOAT

)

Figure 50: Schema for Table type float

95

CREATE TABLE table int (
col1 INT,
col2 INT,
col3 INT,
col4 INT,
col5 INT,
col6 INT,
col7 INT,
col8 INT,
...

...
col99 INT,
col100 INT

)

Figure 51: Schema for Table type int

CREATE TABLE table real (
col1 REAL,
col2 REAL,
col3 REAL,
col4 REAL,
col5 REAL,
col6 REAL,
col7 REAL,
col8 REAL,
...

...
col99 REAL,
col100 REAL

)

Figure 52: Schema for Table type real

96

CREATE TABLE table smallint (
col1 SMALLINT,
col2 SMALLINT,
col3 SMALLINT,
col4 SMALLINT,
col5 SMALLINT,
col6 SMALLINT,
col7 SMALLINT,
col8 SMALLINT,
...

...
col99 SMALLINT,
col100 SMALLINT

)

Figure 53: Schema for Table type smallint

CREATE TABLE table time (
col1 TIME,
col2 TIME,
col3 TIME,
col4 TIME,
col5 TIME,
col6 TIME,
col7 TIME,
col8 TIME,
...

...
col99 TIME,
col100 TIME

)

Figure 54: Schema for Table type time

97

CREATE TABLE table timestamp (
col1 TIMESTAMP,
col2 TIMESTAMP,
col3 TIMESTAMP,
col4 TIMESTAMP,
col5 TIMESTAMP,
col6 TIMESTAMP,
col7 TIMESTAMP,
col8 TIMESTAMP,
...

...
col99 TIMESTAMP,
col100 TIMESTAMP

)

Figure 55: Schema for Table type timestamp

CREATE TABLE table varchar2 (
col1 VARCHAR(2),
col2 VARCHAR(2),
col3 VARCHAR(2),
col4 VARCHAR(2),
col5 VARCHAR(2),
col6 VARCHAR(2),
col7 VARCHAR(2),
col8 VARCHAR(2),
...

...
col99 VARCHAR(2),
col100 VARCHAR(2)

)

Figure 56: Schema for Table type varchar2

98

CREATE TABLE table varchar3 (
col1 VARCHAR(3),
col2 VARCHAR(3),
col3 VARCHAR(3),
col4 VARCHAR(3),
col5 VARCHAR(3),
col6 VARCHAR(3),
col7 VARCHAR(3),
col8 VARCHAR(3),
...

...
col99 VARCHAR(3),
col100 VARCHAR(3)

)

Figure 57: Schema for Table type varchar3

CREATE TABLE table varchar4 (
col1 VARCHAR(4),
col2 VARCHAR(4),
col3 VARCHAR(4),
col4 VARCHAR(4),
col5 VARCHAR(4),
col6 VARCHAR(4),
col7 VARCHAR(4),
col8 VARCHAR(4),
...

...
col99 VARCHAR(4),
col100 VARCHAR(4)

)

Figure 58: Schema for Table type varchar4

99

CREATE TABLE table varchar5 (
col1 VARCHAR(5),
col2 VARCHAR(5),
col3 VARCHAR(5),
col4 VARCHAR(5),
col5 VARCHAR(5),
col6 VARCHAR(5),
col7 VARCHAR(5),
col8 VARCHAR(5),
...

...
col99 VARCHAR(5),
col100 VARCHAR(5)

)

Figure 59: Schema for Table type varchar5

CREATE TABLE table varchar6 (
col1 VARCHAR(6),
col2 VARCHAR(6),
col3 VARCHAR(6),
col4 VARCHAR(6),
col5 VARCHAR(6),
col6 VARCHAR(6),
col7 VARCHAR(6),
col8 VARCHAR(6),
...

...
col99 VARCHAR(6),
col100 VARCHAR(6)

)

Figure 60: Schema for Table type varchar6

100

CREATE TABLE table varchar7 (
col1 VARCHAR(7),
col2 VARCHAR(7),
col3 VARCHAR(7),
col4 VARCHAR(7),
col5 VARCHAR(7),
col6 VARCHAR(7),
col7 VARCHAR(7),
col8 VARCHAR(7),
...

...
col99 VARCHAR(7),
col100 VARCHAR(7)

)

Figure 61: Schema for Table type varchar7

CREATE TABLE table varchar8 (
col1 VARCHAR(8),
col2 VARCHAR(8),
col3 VARCHAR(8),
col4 VARCHAR(8),
col5 VARCHAR(8),
col6 VARCHAR(8),
col7 VARCHAR(8),
col8 VARCHAR(8),
...

...
col99 VARCHAR(8),
col100 VARCHAR(8)

)

Figure 62: Schema for Table type varchar8

101

CREATE TABLE table varchar9 (
col1 VARCHAR(9),
col2 VARCHAR(9),
col3 VARCHAR(9),
col4 VARCHAR(9),
col5 VARCHAR(9),
col6 VARCHAR(9),
col7 VARCHAR(9),
col8 VARCHAR(9),
...

...
col99 VARCHAR(9),
col100 VARCHAR(9)

)

Figure 63: Schema for Table type varchar9

CREATE TABLE table varchar10 (
col1 VARCHAR(10),
col2 VARCHAR(10),
col3 VARCHAR(10),
col4 VARCHAR(10),
col5 VARCHAR(10),
col6 VARCHAR(10),
col7 VARCHAR(10),
col8 VARCHAR(10),
...

...
col99 VARCHAR(10),
col100 VARCHAR(10)

)

Figure 64: Schema for Table type varchar10

102

D Graphs

This section contains those figures mentioned in section 6. Both scatter plots and bar charts

are provided below. The data is labelled as follows in the graph legends:

< ServerCPUSpeed > − < PrefetchStatus > − < LinkSpeed > (13)

So, for example, a data label of ‘800-0-10’ refers to a server with an 800 MHz CPU connected

to a 10 Base-T link with prefetch disabled.

D.1 Scatter Plots

103

Figure 65: NetBench Network Time with 10 and 100 Base-T links and a packet size of 1460
bytes.

104

Figure 66: System 1 Network Time with a 10 Base-T link and a packet size of 1460 bytes.

105

Figure 67: System 1 Network Time with a 100 Base-T link and a packet size of 1460 bytes.

106

Figure 68: System 1 Network Time with a 10 Base-T link and a packet size of 2920 bytes.

107

Figure 69: System 1 Network Time with a 100 Base-T link and a packet size of 2920 bytes.

108

Figure 70: System 2 Network Time with a 10 Base-T link and a packet size of 4096 bytes.

109

Figure 71: System 2 Network Time with a 100 Base-T link and a packet size of 4096 bytes.

110

Figure 72: System 2 Network Time with a 10 Base-T link and a packet size of 2048 bytes.

111

Figure 73: System 2 Network Time with a 100 Base-T link and a packet size of 2048 bytes.

112

Figure 74: System 3 Network Time with a 10 Base-T link and a packet size of 32767 bytes.

113

Figure 75: System 3 Network Time with a 100 Base-T link and a packet size of 32767 bytes.

114

Figure 76: System 3 Network Time with a 10 Base-T link and a packet size of 16384 bytes.

115

Figure 77: System 3 Network Time with a 100 Base-T link and a packet size of 16384 bytes.

116

Figure 78: System 4 Network Time with a 10 Base-T link and a packet size of 2048 bytes.

117

Figure 79: System 4 Network Time with a 100 Base-T link and a packet size of 2048 bytes.

118

Figure 80: System 4 Network Time with a 10 Base-T link and a packet size of 1024 bytes.

119

Figure 81: System 4 Network Time with a 100 Base-T link and a packet size of 1024 bytes.

120

D.2 Bar Charts

This section contains those bar charts referenced in section 6.

121

Figure 82: System 1 Network Time with a 10 Base-T link and a packet size of 1460 bytes.

122

Figure 83: System 1 Network Time with a 100 Base-T link and a packet size of 1460 bytes.

123

Figure 84: System 1 Network Time with a 10 Base-T link and a packet size of 2920 bytes.

124

Figure 85: System 1 Network Time with a 100 Base-T link and a packet size of 2920 bytes.

125

Figure 86: System 2 Network Time with a 10 Base-T link and a packet size of 4096 bytes.

126

Figure 87: System 2 Network Time with a 100 Base-T link and a packet size of 4096 bytes.

127

Figure 88: System 2 Network Time with a 10 Base-T link and a packet size of 2048 bytes.

128

Figure 89: System 2 Network Time with a 100 Base-T link and a packet size of 2048 bytes.

129

Figure 90: System 3 Network Time with a 10 Base-T link and a packet size of 32767 bytes.

130

Figure 91: System 3 Network Time with a 100 Base-T link and a packet size of 32767 bytes.

131

Figure 92: System 3 Network Time with a 10 Base-T link and a packet size of 16384 bytes.

132

Figure 93: System 3 Network Time with a 100 Base-T link and a packet size of 16384 bytes.

133

Figure 94: System 4 Network Time with a 10 Base-T link and a packet size of 2048 bytes.

134

Figure 95: System 4 Network Time with a 100 Base-T link and a packet size of 2048 bytes.

135

Figure 96: System 4 Network Time with a 10 Base-T link and a packet size of 1024 bytes.

136

Figure 97: System 4 Network Time with a 100 Base-T link and a packet size of 1024 bytes.

137

